リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fano resonance of optical phonons in a multilayer graphene stack」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fano resonance of optical phonons in a multilayer graphene stack

Masahiro Kitajima 00343830 Ikufumi Katayama 80432532 Ørjan Sele Handegård Tadaaki Nagao 40267456 Shohei Chiashi 50434022 Shigeo Maruyama 90209700 Jun Takeda 60202165 横浜国立大学

2021.11.30

概要

We studied Fano interference between the Raman spectrum of G-band phonons and electron continuum in a multilayer graphene stack. The thickness and power dependencies of the Fano interference coefficient ∣1/q∣ in the G-mode, where q is the Fano asymmetry parameter, were spatially visualized and analyzed using the Gaussian-convoluted Breit–Wigner–Fano function. The estimated ∣1/q∣ decreases with an increase in the layer number and laser power in the low-power region at least for monolayer, bilayer, and trilayer graphene. In the higher-power region, ∣1/q∣ increases with power only for monolayer graphene. The observed behaviors of ∣1/q∣ reflect the phase difference of Raman signals from the electron continuum and G-band and possibly originate from changes in the electronic relaxation time and the Fermi level of graphene owing to the laser heating of the sample.

この論文で使われている画像

参考文献

1. A. K. Geim, and K. S. Novoselov: Nat. Mater. 6, 183 (2007).

2.

A. K. Geim, K. S. Novoselov, S.V. Morozov, D. Jiang, S. V. Dubonos, I. V. Grigorieva,

and A. A. Firsov: Science 306, 666 (2004).

3.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan,

G. S. Boebinger, P. Kim, and A. K. Geim: Science 315, 1379 (2007).

4. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth:

Nature 446, 60 (2007).

5. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec,

D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim: Phys. Rev. Lett. 97, 187401 (2006).

6. A. C. Ferrari: Sol. Stat. Commun. 143, 47-57 (2007).

7. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz: Nano

Lett. 7, 238-242 (2007).

8. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz: Sol.

Stat. Commun. 143, 44-46 (2007).

9. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S.

Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood: Nat.

Nanotechnol. 3, 210-215 (2008).

10. Z. Ni, Y. Wang, T. Yu Z. Shen: Nano Res. 1, 273-291 (2008).

11. H. Wang, Y. Wang, X. Cao, M. Feng, G. Lan: J. Raman Spectrosc. 40, 1791-1796 (2009).

12. R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park: Nano Lett. 12, 3162

(2012).

13. Y. Y. Wang, Z. H. Ni, and Z. X. Shen: Appl. Phys. Lett. 92, 043121 (2008).

14. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C.

Cairaghi: Nano Lett. 12, 3925-3930 (2012).

15. C. Stampfer, F. Molitor, D. Graf, and K. Ensslin: Appl. Phys. Lett. 91, 241907 (2007).

16. J. Yan, Y. Zhang, P. Kim, and A. Pinczuk: Phys. Rev. Lett. 98, 166802 (2007).

17. U. Fano: Phys. Rev. 124, 1866-1878 (1961).

18. F. Cerdeira, T.A. Fjeldly, and M. Cardona: Phys. Rev. B 8, 4734 (1973).

19. M.V. Klein, in Light scattering in solids I, Topics in applied physics (Springer-Verlag,

Berlin, 1983) Vol. 8, pp. 147-204.

20. P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang, Y. F. Wang, N. Bonini,

N. Marzari, G. Savini, A. Lombardo, and A. C. Ferrari: Nature Mat. 11, 294-300 (2014).

21. E. H. Hasedo, A. R. T. Nugraha, M. S. Dresselhaus and R. Saito: Phys. Rev. B 90, 245140

(2014).

22. P. C. Eklund and K. R. Subbaswamy: Phys. Rev. B 20, 5157 (1979).

23. S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, and K.

Kneipp: Phys. Rev. B 63, 155414 (2001).

24. C. Jiang, K. Kempa, J. Zhao, U. Schlecht, U. Kolb, T. Basche, M. Burghard, and A.

Mews: Phys. Rev. B 66, 161404 (2002).

25. D. Yoon, D. Jeong, H.-J. Lee, R. Saito, Y.-W. Son, H.-C. Li, and H. Cheong: Carbon 61,

373 (2013).

26. A. B. Kuzmenko, L. Benfatto, E. Cappelluti, I Crassee, D. van der Marel, P. Blake, K. S.

Novoselov, and A. K. Geim: Phys. Rev. Lett. 103, 116804 (2009).

27. J. M. Baranowski, M. Mozdzonek, P. Dabrowski, K. Grodecki, P. Osewski, W.

Kozlowski, M. Kopciuszynski, and W. Strupinski: Graphene 2, 115-120 (2013).

28. R. Kitaura, Y. Miyata, R. Xiang, J. Hone, J. Kong, R. S. Ruoff, and S. Maruyama: J.

Phys. Soc. Jpn. 84, 121013 (2015).

29. X. Chen, P. Zhao, R. Xiang, S. Kim, J.-H. Cha, S. Chiashi, S. Maruyama: Carbon 94,

810 (2015).

30. P. Zhao, S. Kim, X. Chen, E. Einarsson, M. Wang, Y. Song, H. Wang, S. Chiashi, R.

Xiang, and S. Maruyama: ACS Nano 8, 11631 (2014).

31. W. Zhang, J. Yan, C.-H. Chen, L. Lei, J.-L Kuo, Z. Shen, and L.-J. Li: Nat. Commun. 4,

2074 (2013).

32. J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, and P.-H. Tan: Chem. Soc. Rev. 47, 1822

(2018).

33. Y. Chen, and L. Dai: Appl. Opt. 55, 4085 (2016).

34. L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro

Neto, and M. A. Pimenta: Phys. Rev. B 76, 201401 (2007).

35. M. Hase, M. Kitajima, S. Nakashima, and K. Mizoguchi: Phys. Rev. Lett. 88, 067401

(2002).

36. O.V. Misochko, K. Ishioka, M. Hase, and M. Kitajima: J. Phys.: Condens. Mater. 19,

156227 (2007).

37. D. Huehn, A. Govolov, P. R. Gil, and W. J. Parak: Adv. Funct. Mater. 22, 294 (2012).

38. M. Sparks: J. Appl. Phys. 47, 837 (1976).

39. C. Ott, A. Kadum, P. Raith, K. Meyer, M. Laux, J. Evers, C. H. Keitel, C. H. Greene, and

T. Pfeifer: Science 340, 716 (2013).

40. K. Kato, Y. Hasegawa, K. Oguri, T. Tawara, T. Nishikawa, and H. Gotoh: Phys. Rev. B

97, 104301 (2018).

41. S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A.

Knorr, M. Spinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm: Phys. Rev.

Lett. 107, 237401 (2011).

42. N. W. Ashcroft and N. Mermin, Solid State Physics (Cengage Learning Inc., 1976) Chap.

2.

43. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim: Rev.

Mod. Phys. 81, 109 (2009).

44. I. Katayama, K. Inoue, Y. Arashida, Y. Wu, H. Yang, T. Inoue, S. Chiashi, S. Maruyama,

T. Nagao, M. Kitajima, and J. Takeda: Phys. Rev. B 101, 245408 (2020).

Figure captions

Figure 1: Sample of the graphene stack and Raman maps. (a) Raman spectrum of monolayer

graphene. The inset is an optical microscope image of the graphene multilayer stack. The

area indicated by a red rectangle was examined by Raman mapping. (b) Raman intensity

maps of the G peak, (c) Si optical phonon band, and (d) 2D peak. The hexagonal shape of

graphene layers is also observed in Raman images. (e) Layer number dependence of the Gpeak intensity. The G-band intensity is reported to increase almost linearly with layer number

for sheets that are less than ~10 layers and then decrease for thicker graphene sheets [10,13].

The observed dependence is similar to the trend for thinner sheets.

Figure 2: Raman maps of (a) intensity IG, (b) frequency fG, (c) damping constant G, and

(d) electron–phonon coupling strength |1/q| for the G-band around the 1–2-ML border of

the graphene stack. The data were obtained at a laser power of 0.23 mW. The values of fG,

G, and |1/q| were obtained using BWF fittings at each scanning point. The maps clearly

indicate the change in |1/q|, as well fG and G, along the border.

Figure 3: Line shapes of the G peaks. (a) Raman spectra (filled circles), fits by the BWF

formula (dashed lines), and fits by the BWF–Gauss function (solid lines). The data for 1and 2-ML graphene and graphite are plotted. (b) Changes in line shapes owing to slight

changes in 1/q values in the BWF–Gauss function. The plot ensures that 1/q values are

clearly determined by the fitting. (c) Layer number dependence of the center frequency (fG)

and 1/q obtained by the BWF–Gauss fitting. The Raman spectra were obtained at a power

of 0.23 mW. For the fitting, we used the spectra integrated over scanned positions on areas

at each layer without defects. Error bars in the figure are estimated from the fitting accuracy

of the parameter q.

Figure 4: Laser-power dependence of 1/q for 1, 2, and 3 ML of the graphene stack. The result

for HOPG is also illustrated for comparison. The value of 1/q monotonously decreases with

laser power, except for 1 ML. Dashed lines are guidelines for the experimental data points.

The |1/q| images for the 1–2-ML border measured at 10- and 20-mW laser powers are

presented on the right-hand side. The circle indicates discrepancy from the monotonic

decrease in 1/q for the 1-ML sample.

Figure 5: (a) Comparison of the observation and calculations for the laser-power

dependence of 1/q for monolayer graphene. Circle: experiments; blue dotted line:

extrapolation for temperature from the temperature dependence in reference [40]; red

dashed line: calculated curve obtained by taking into account the laser-heating-induced

Fermi energy change. (b) Relation of 1/q vs. the phase between discrete phonons and the

electronic continuum calculated using Eq. 2) [39]. In this figure, the observed values are

plotted in green circles, together with the values of Si for comparison (blue triangles) [40].

(c) Laser-power dependence of calculated 1/q for monolayer graphene with different initial

Fermi energies |𝐸0𝐹 | without laser excitation. Brown dotted line: |𝐸0𝐹 | = 0.10 eV, pink dashtwo-dot line:|𝐸0𝐹 | = 0.15 eV, red solid line:|𝐸0𝐹 | = 0.20 eV (this is the same as that of our

sample), blue dash-dot line:|𝐸0𝐹 | = 0.25 eV, green dotted line: |𝐸0𝐹| = 0.30 eV. We have also

calculated the values for |𝐸 | = 0, which results in the same curve as that for |𝐸 | =

0.15 eV.

Fig. 1 Kitajima et al.

Fig. 2 Kitajima et al.

Fig. 3 Kitajima et al.

Fig. 4 Kitajima et al.

Fig. 5 Kitajima et al.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る