リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Leading-Edge Separation Behaviors in SA RANS and SA-Based DDES: Simple Modifications for Improved Prediction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Leading-Edge Separation Behaviors in SA RANS and SA-Based DDES: Simple Modifications for Improved Prediction

Kitamura K. 20402547 Takagi Y. Harada T. Yasumura Y. Kanamori M. Hashimoto A. 30462899 横浜国立大学

2023.02.05

概要

In this study, delayed detached-eddy simulations (DDESs) based on the Spalart–Allmaras turbulence model are investigated for separation flows. Three simple modifications are considered: the Reynolds-averaged Navier–Stokes (RANS) turbulence model coefficient, Crot, is calibrated to achieve a better leading-edge separation prediction in DDES; the large-eddy simulation (LES) coefficient, CDES, is assessed to obtain better dissipation control in DDES; and dirty-cell treatments in three-dimensional unstructured grids are conducted for a smooth LES/RANS transition. Numerical results confirm the effects of the three aforementioned steps, such as the reproducibility of the measured pressure distribution over the main wing in unsteady turbulence simulations of low-speed buffet around the NASA Common Research Model. Thus, these modifications will potentially serve as good alternatives, without major programming efforts, to the conventional approaches for practitioners.

参考文献

1) Deck, S.: Numerical Simulation of Transonic Buffet over a Supercritical Airfoil, AIAA J., Vol. 43, No. 7, 2005, pp.1556– 1566.

2) Sartor, F., and Timme, S.: Delayed Detached–Eddy Simulation of Shock Buffet on Half Wing–Body Configuration, AIAA J., Vol. 55, No. 4, 2017, pp.1230-1240.

3) Waldmann, A., Gansel, P.P., Lutz, T., and Krämer, E., “Unsteady Wake Flow Analysis of an Aircraft under low-speed Stall Conditions using DES and PIV”, AIAA 2015-1096, 2015.

4) Dandois, J., Mary I., and Brion, V.: Large-eddy simulation of laminar transonic buffet, J. Fluid Mech., Vol. 850, 2018, pp.156-178.

5) Kouchi, T., Yamaguchi, S., Koike, S., Nakajima, T., Sato, M., Kanda, H. & Yanase, S., Wavelet analysis of transonic buffet on a two-dimensional airfoil with vortex generators, Exp. Fluids, Vol. 57, 2016, Article Number 166. https://doi.org/10.1007/s00348-016-2261-2

6) Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. Kh., and Travin, A.: A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities, Theor. and Comput. Fluid Dynamics, Vol. 20, 2006, pp. 181-195.

7) Mohamed, K., Nadarajah, S., and Paraschivoiu, M.: Detached-Eddy Simulation of a Wing Tip Vortex at Dynamic Stall Conditions, Journal of Aircraft, Vol. 46, No. 4, 2009, pp. 1302–1313.

8) Spalart, P., and Allmaras, S., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA 1992-439, 1992.

9) Rumsey, C. L.: Apparent Transition Behavior of Widely-used Turbulence Models, Int. J. Heat and Fluid Flow, Vol. 28, 2007, pp. 1460–1471.

10) Dacles-Mariani, J., Kwak, D., and Zilliac, G.: On Numerical Errors and Turbulence Modeling in Tip Vortex Flow Prediction, Int. J. Numer. Meth. Fluids, Vol. 30, 1999, pp. 65-82.

11) Dacles-Mariani, J., Zilliac, G.G., Chow, J. and Bradshaw, P.: Numerical/Experimental Study of a Wingtip Vortex in the Near Field, AIAA J., Vol. 33, No. 9, 1995, pp. 1561–1568.

12) Lei, Z.: Effect of RANS Turbulence Models on Computation of Vortical Flow over Wing-Body Configuration, Trans. Japan Soc. Aero. Space Sci., Vol. 48, No. 161, 2005, pp. 152-160.

13) NASA Langley Research Center, “Turbulence Modeling Resource” https://turbmodels.larc.nasa.gov/spalart.html (Accessed on May-03-2019)

14) Kwak, D., Ohira, K. and Rudnik, R.: Reynolds Number Effect on Vortex Dominant Flow of the SST Configurations, APISAT2014, Session 1-7-3, 2014.

15) Spalart P.R., Jou W.-H., Strelets M., and Allmaras S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Advances in DNS/LES, ed. C Liu, Z Liu, 1997, pp. 137–47. Columbus, OH: Greyden Press

16) Shur ML, Spalart PR, Strelets MKh, Travin A.: A hybrid RANS-LES model with delayed DES and wall-modeled LES capabilities, Int. J. Heat Fluid Flow, Vol. 29, 2008, pp. 1638–1649. doi:10.1016/j.ijheatfluidflow.2008.07.001

17) Tucker, P.G.: Unsteady Computational Fluid Dynamics in Aeronautics (Fluid Mechanics and Its Applications), Springer, Berlin Heidelberg, 2014. ISBN-13: 978-9402405743

18) Spalart, P.R., Detached-Eddy Simulation, Annual Review of Fluid Mechanics, Vol. 41, pp.181-202, 2009. 10.1146/annurev.fluid.010908.165130

19) Vatsa, V.N., Lockard, D.P., and Spalart, P.R.: Grid Sensitivity of SA-Based Delayed-Detached-Eddy-Simulation Model for Blunt-Body Flows, AIAA Journal, Vol. 55, No. 8, 2017, pp.2842-2847. https://doi.org/10.2514/1.J055685

20) Molina, E., Zhou, B.Y., Alonso, J.J., Righi M., and Silva, R.G.: Flow and Noise Predictions Around Tandem Cylinders using DDES approach with SU2, AIAA 2019-0326, AIAA Scitech 2019 Forum, 7-11 January 2019, San Diego, California.

21) Kitamura, K. and Hashimoto, A.: Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations, Computers and Fluids, Vol. 126, 2016, pp. 41–57.

22) Kitamura, K. and Shima, E.: Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes, J. Comput. Phys., Vol.245, 2013, pp.62-83.

23) Thornber, B.J.R. and Drikakis, D.: Numerical dissipation of upwind schemes in low Mach flow, International Journal for Numerical Methods in Fluids, Vol. 56, No. 8, 2008, pp.1535-1541.

24) Roe, P.L.: Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech., Vol. 18, 1986, pp. 337–365.

25) Winkler, C.M., Dorgany, A.J. and Mani, M.: A reduced dissipation approach for unsteady flows on unstructured grids. AIAA 2012-0570, 2012.

26) Hashimoto, A., Murakami, K., Aoyama, T., Yamamoto, K., Murayama, M. and Lahur, P. R.: Drag Prediction on NASA Common Research Model Using Automatic Hexahedra Grid-Generation Method, J. Aircraft, Vol.51, 2014, pp. 1172-1182.

27) Ito, Y., and Nakahashi, K.: Direct Surface Triangulation Using Stereolithography Data, AIAA J., Vol. 40, 2002, pp. 490-496.

28) Hashimoto, A., Murakami, K., Aoyama, T., Hishida, M., Sakashita, M., and Lahur, P.: Development of Fast UnstructuredGrid Flow Solver FaSTAR, Journal of Japan Society for Aeronautical and Space Sciences, Vol. 63, 2015, pp. 96-105 (in Japanese).

29) Kitamura, K., Aogaki, T., Inatomi, A., Fukumoto, K., Takahama, T., and Hashimoto, A.: Post Limiters and Simple Dirty-Cell Detection for Three-Dimensional, Unstructured, (Unlimited) Aerodynamic Simulations, AIAA J., Vol. 56, No. 8, 2018, pp. 3192-3204. doi:10.2514/1.J056683

30) Kanamori, M., Takahashi, T., Makino, Y., Naka, Y., and Ishikawa, H.: Comparison of Simulated Sonic Boom in Stratified Atmosphere with Flight Test Measurements, AIAA J., Vol. 56, No. 7, 2018, pp. 2743-2755.

31) Sutherland, W., LII.: The viscosity of gases and molecular force, Philosophical Magazine Series, Vol.5, No.36, 223, 1893, pp.507-531, DOI: 10.1080/14786449308620508

32) Baldwin, B. S., and Barth, T. J.: A One-Equation Transport Model for High Reynolds Number Wall-Bounded Flows," NASA TM 102847, Aug. 1990.

33) Strelets, M.: Detached Eddy Simulation of Massively Separated Flows, AlAA 2001-0879, 39th Aerospace Sciences Meeting and Exhibit, Jan. 08-11, 2001, Reno, NV.

34) Panaras, A. and Drikakis, D.: High-speed unsteady flows around spiked-blunt bodies, Journal of Fluid Mechanics, Vol. 632, 2009, pp.69-96.

35) Aogaki, T., Kitamura, K., and Nonaka, S.: High Angle-of-Attack Pitching Moment Characteristics of Slender-Bodied Reusable Rocket, Journal of Spacecraft and Rockets, Vol. 55, No. 6, 2018, pp.1476-1489. doi:10.2514/1.A34211

36) Takagi, Y., Aogaki, T., Kitamura, K., and Nonaka, S.: Numerical Study on Aerodynamic Characteristics of Slender-bodied Reusable Rockets Using Fins and Vortex Flaps at Very High Angles of Attack, Trans. JSASS, Aerospace Tech. Japan, Vol. 18, No. 4, pp. 149-158, 2020.

37) Weiss, J.M. and Smith, W.A.: Preconditioning Applied to Variable and Constant Density Flows, AIAA J., Vol. 33, 1995, pp. 2050-2057.

38) Venkatakrishnan, V.: Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters, J. Comput. Phys., Vol.118, 1995, pp.120-130.

39) Burg, C. O. E.: Higher Order Variable Extrapolation for Unstructured Finite Volume RANS Flow Solvers, 17th AIAA Computational Fluid Dynamics Conference, Toronto, Ontario, Canada, AIAA 2005-4999, 2005.

40) Harada, T., Kawauchi, K., Kitamura, K., and Nonaka, S.: Side Force Characteristics of Supersonic Flight Vehicle Equipped with Asymmetric Protuberance, AIAA 2019-0299, AIAA SciTech Forum 2019, San Diego, CA, Jan. 2019.

41) Kawauchi, K., Harada, T., Kitamura, K., and Nonaka, S.: Experimental and Numerical Investigations of Slender Body Side Force with Asymmetric Protuberances, Journal of Spacecraft and Rockets, Vol. 56, No. 5, 2019, pp. 1346–1357. doi:10.2514/1.A34439

42) Mavriplis, D. J., “Revisiting the Least-Squares Procedure for Gradient Reconstruction on Unstructured Meshes,” AIAA 2003-3986, 2003.

43) Roe, P.L.: Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech., Vol. 18, 1986, pp.337–365.

44) Van Leer, B.: Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method, J. Comput. Phys., Vol. 32, 1979, pp.101-136.

45) Shima, E. and Kitamura, K.: Parameter Free, Simple, Low-dissipation AUSM-family Scheme for All Speeds, AIAA J., Vol.49, 2011, pp.1693-1709.

46) Jameson, A. and Turkel, E.: Implicit Schemes and LU Decompositions, Math. of Comput., Vol. 37, 1981, pp.385-397.

47) Hishida, M., Hashimoto, A., Murakami, K., and Aoyama, T., “A New Slope Limiter for Fast Unstructured CFD Solver FaSTAR,” JAXA-SP-10-012, JAXA, Tokyo, 2011, pp. 85–90 (in Japanese).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る