リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes

Ng, Su-Ping Nomura, Wataru Takahashi, Haruya Inoue, Kazuo Kawada, Teruo Goto, Tsuyoshi 京都大学 DOI:10.1016/j.bbrep.2021.101127

2021.12

概要

Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.

この論文で使われている画像

参考文献

[1] C.H. Saely, K. Geiger, H. Drexel, Brown versus white adipose tissue: a mini-review,

Gerontology 58 (2012) 15–23, https://doi.org/10.1159/000321319.

[2] B. Cannon, J.A.N. Nedergaard, Brown adipose tissue: function and physiological

significance, Physiol. Rev. 84 (2004) 277–359, https://doi.org/10.1152/

physrev.00015.2003.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

S.-P. Ng et al.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Biochemistry and Biophysics Reports 28 (2021) 101127

[32] A.A. Akhand, K. Hossain, H. Mitsui, M. Kato, T. Miyata, R. Inagi, J. Du, K. Takeda,

Y. Kawamoto, H. Suzuki, K. Kurokawa, I. Nakashima, Glyoxal and methylglyoxal

trigger distinct signals for map family kinases and caspase activation in human

endothelial cells, Free Radic. Biol. Med. 31 (2001) 20–30, https://doi.org/

10.1016/s0891-5849(01)00550-0.

[33] B.F. Liu, S. Miyata, Y. Hirota, S. Higo, H. Miyazaki, M. Fukunaga, Y. Hamada,

S. Ueyama, O. Muramoto, A. Uriuhara, M. Kasuga, Methylglyoxal induces

apoptosis through activation of p38 mitogen-activated protein kinase in rat

mesangial cells, Kidney Int. 63 (2003) 947–957, https://doi.org/10.1046/j.15231755.2003.00829.x.

[34] W.H. Chan, H.J. Wu, N.H. Shiao, Apoptotic signaling in methylglyoxal-treated

human osteoblasts involves oxidative stress, c-Jun N-terminal kinase, caspase-3,

and p21-activated kinase 2, J. Cell. Biochem. 100 (2007) 1056–1069, https://doi.

org/10.1002/jcb.21114.

[35] X. Ma, D. Wang, W. Zhao, L. Xu, Deciphering the roles of PPARγ in adipocytes via

dynamic change of transcription complex, Front. Endocrinol. 9 (2018) 473,

https://doi.org/10.3389/fendo.2018.00473.

[36] K.A. Burns, J.P.V. Heuvel, Modulation of PPAR activity via phosphorylation,

Biochim. Biophys. Acta 1771 (2007) 952–960, https://doi.org/10.1016/j.

bbalip.2007.04.018.

[37] B. Grimaldi, M.M. Bellet, S. Katada, G. Astarita, J. Hirayama, R.H. Amin, J.

G. Granneman, D. Piomelli, T. Leff, P. Sassone-Corsi, PER2 controls lipid

metabolism by direct regulation of PPARγ, Cell Metabol. 12 (2010) 509–520,

https://doi.org/10.1016/j.cmet.2010.10.005.

[38] X. Lu, S. Altshuler-Keylin, Q. Wang, Y. Chen, C.H. Sponton, K. Ikeda, P. Maretich,

T. Yoneshiro, S. Kajimura, Mitophagy controls beige adipocyte maintenance

through a Parkin-dependent and UCP1-independent mechanism, Sci. Signal. 11

(2018), eaap8526, https://doi.org/10.1126/scisignal.aap8526.

[39] S. Altshuler-Keylin, K. Shinoda, Y. Hasegawa, K. Ikeda, H. Hong, Q. Kang, Y. Yang,

R.M. Perera, J. Debnath, S. Kajimura, Beige adipocyte maintenance is regulated by

autophagy-induced mitochondrial clearance, Cell Metabol. 24 (2016) 402–419,

https://doi.org/10.1016/j.cmet.2016.08.002.

[40] D. Taylor, R.A. Gottlieb, Parkin-mediated mitophagy is downregulated in browning

of white adipose tissue, Obesity 25 (2017) 704–712, https://doi.org/10.1002/

oby.21786.

[41] M. Szatm´

ari-T´

oth, A. Shaw, I. Csom´

os, G. Mocs´

ar, P. Fischer-Posovszky,

M. Wabitsch, Z. Balajthy, C. L´

anyi, F. Gy˝

ory, E. Krist´

of, L. F´

esüs, Thermogenic

activation downregulates high mitophagy rate in human masked and mature beige

adipocytes, Int. J. Mol. Sci. 21 (2020) 6640, https://doi.org/10.3390/

ijms21186640.

[42] D. Kim, K.A. Kim, J.H. Kim, E.H. Kim, O.N. Bae, Methylglyoxal-induced

dysfunction in brain endothelial cells via the suppression of akt/HIF-1α pathway

and activation of mitophagy associated with increased reactive oxygen species,

Antioxidants 9 (2020) 820, https://doi.org/10.3390/antiox9090820.

[43] J.H. Kim, H.Y. Kim, Y.K. Lee, Y.S. Yoon, W.G. Xu, J.K. Yoon, S.E. Choi, Y.G. Ko, M.

J. Kim, S.J. Lee, H.J. Wang, G. Yoon, Involvement of mitophagy in oncogenic KRas-induced transformation: overcoming a cellular energy deficit from glucose

deficiency, Autophagy 7 (2011) 1187–1198, https://doi.org/10.4161/

auto.7.10.16643.

[44] J.H. Park, J. Ko, Y.S. Park, J. Park, J. Hwang, H.C. Koh, Clearance of damaged

mitochondria through PINK1 stabilization by JNK and ERK MAPK signaling in

chlorpyrifos-treated neuroblastoma cells, Mol. Neurobiol. 54 (2017) 1844–1857,

https://doi.org/10.1007/s12035-016-9753-1.

[45] P. Newsholme, V.F. Cruzat, K.N. Keane, R. Carlessi, de Bittencourt Jr., PIH,

Molecular mechanisms of ROS production and oxidative stress in diabetes,

Biochem. J. 473 (2016) 4527–4550, https://doi.org/10.1042/BCJ20160503C.

[46] J.L. Figarola, J. Singhal, S. Rahbar, S. Awasthi, S.S. Singhal, LR-90 prevents

methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells,

Apoptosis 19 (2014) 776–788, https://doi.org/10.1007/s10495-014-0974-3.

[47] C. Liu, Y. Huang, Y. Zhang, X. Chen, X. Kong, Y. Dong, Intracellular methylglyoxal

induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1α-JNK

and mitochondrial apoptotic pathway, Free Radic. Res. 51 (2017) 337–350,

https://doi.org/10.1080/10715762.2017.1289376.

[48] J.J. Jia, Y.B. Tian, Z.H. Cao, L.L. Tao, X. Zhang, S.Z. Gao, C.R. Ge, Q.Y. Lin, M. Jois,

The polymorphisms of UCP1 genes associated with fat metabolism, obesity and

diabetes, Mol. Biol. Rep. 37 (2010) 1513–1522, https://doi.org/10.1007/s11033009-9550-2.

progression of type 2 diabetes, Cell Metabol. 27 (2018) 926–934, https://doi.org/

10.1016/j.cmet.2018.02.003.

T. Sakamoto, N. Takahashi, Y. Sawaragi, S. Naknukool, R. Yu, T. Goto, T. Kawada,

Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via

ERK activation in 10T1/2 adipocytes, Am. J. Physiol. Cell Physiol. 304 (2013)

C729–C738, https://doi.org/10.1152/ajpcell.00312.2012.

S.P. Ng, W. Nomura, S. Mohri, H. Takahashi, H.F. Jheng, T. Ara, H. Nagai, T. Ito,

T. Kawada, T. Goto, Soy hydrolysate enhances the isoproterenol-stimulated

lipolytic pathway through an increase in β-adrenergic receptor expression in

adipocytes, Biosci. Biotechnol. Biochem. 83 (2019) 1782–1789, https://doi.org/

10.1080/09168451.2019.1611413.

P.J. Thornalley, L.G. Edwards, Y. Kang, C. Wyatt, N. Davies, M.J. Ladan, J. Double,

Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and

in vivo: inhibition of glyoxalase I and induction of apoptosis, Biochem. Pharmacol.

51 (1996) 1365–1372, https://doi.org/10.1016/0006-2952(96)00059-7.

J. Needham, H. Lehmann, Intermediary carbohydrate metabolism in embryonic

life: glyceraldehyde and glucolysis, Biochem. J. 31 (1937) 1913–1925, https://doi.

org/10.1042/bj0311913.

W. Nomura, M. Aoki, Y. Inoue, Toxicity of dihydroxyacetone is exerted through the

formation of methylglyoxal in Saccharomyces cerevisiae: effects on actin polarity

and nuclear division, Biochem. J. 475 (2018) 2637–2652, https://doi.org/

10.1042/BCJ20180234.

G.Y. Carmen, S.M. Víctor, Signalling mechanisms regulating lipolysis, Cell. Signal.

18 (2006) 401–408, https://doi.org/10.1016/j.cellsig.2005.08.009.

C. Holm, Molecular mechanisms regulating hormone-sensitive lipase and lipolysis,

Biochem. Soc. Trans. 31 (2003) 1120–1124, https://doi.org/10.1042/bst0311120.

H. Miyoshi, S.C. Souza, H.H. Zhang, K.J. Strissel, M.A. Christoffolete, J. Kovsan,

A. Rudich, F.B. Kraemer, A.C. Bianco, M.S. Obin, A.S. Greenberg, Perilipin

promotes hormone-sensitive lipase-mediated adipocyte lipolysis via

phosphorylation-dependent and -independent mechanisms, J. Biol. Chem. 281

(2006) 15837–15844, https://doi.org/10.1074/jbc.M601097200.

J. Nedergaard, V. Golozoubova, A. Matthias, A. Asadi, A. Jacobsson, B. Cannon,

UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and

metabolic inefficiency, Biochim. Biophys. Acta 1504 (2001) 82–106, https://doi.

org/10.1016/s0005-2728(00)00247-4.

G.A. Gonzalez, M.R. Montminy, Cyclic AMP stimulates somatostatin gene

transcription by phosphorylation of CREB at serine 133, Cell 59 (1989) 675–680,

https://doi.org/10.1016/0092-8674(89)90013-5.

S.M. Choi, D.F. Tucker, D.N. Gross, R.M. Easton, L.M. DiPilato, A.S. Dean, B.

R. Monks, M.J. Birnbaum, Insulin regulates adipocyte lipolysis via an Aktindependent signaling pathway, Mol. Cell Biol. 30 (2010) 5009–5020, https://doi.

org/10.1128/MCB.00797-10.

M.W. Anthonsen, L. R¨

onnstrand, C. Wernstedt, E. Degerman, C. Holm,

Identification of novel phosphorylation sites in hormone-sensitive lipase that are

phosphorylated in response to isoproterenol and govern activation properties in

vitro, J. Biol. Chem. 273 (1998) 215–221, https://doi.org/10.1074/jbc.273.1.215.

M. Deak, A.D. Clifton, L.M. Lucocq, D.R. Alessi, Mitogen- and stress-activated

protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may

mediate activation of CREB, EMBO J. 17 (1998) 4426–4441, https://doi.org/

10.1093/emboj/17.15.4426.

S. Collins, E. Yehuda-Shnaidman, H. Wang, Positive and negative control of Ucp1

gene transcription and the role of β-adrenergic signaling networks, Int. J. Obes. 34

(2010) S28–S33, https://doi.org/10.1038/ijo.2010.180.

F. Villarroya, M. Peyrou, M. Giralt, Transcriptional regulation of the uncoupling

protein-1 gene, Biochimie 134 (2017) 86–92, https://doi.org/10.1016/j.

biochi.2016.09.017.

M. Iwase, S. Sakai, S. Seno, Y.S. Yeh, T. Kuo, H. Takahashi, W. Nomura, H.F. Jheng,

P. Horton, N. Osato, H. Matsuda, K. Inoue, T. Kawada, T. Goto, Long non-coding

RNA 2310069B03Rik functions as a suppressor of Ucp1 expression under

prolonged cold exposure in murine beige adipocytes, Biosci. Biotechnol. Biochem.

84 (2020) 305–313, https://doi.org/10.1080/09168451.2019.1677451.

M. Iwase, S. Tokiwa, S. Seno, T. Mukai, Y.S. Yeh, H. Takahashi, W. Nomura, H.

F. Jheng, S. Matsumura, T. Kusudo, N. Osato, H. Matsuda, K. Inoue, T. Kawada,

T. Goto, Glycerol kinase stimulates uncoupling protein 1 expression by regulating

fatty acid metabolism in beige adipocytes, J. Biol. Chem. 295 (2020) 7033–7045,

https://doi.org/10.1074/jbc.RA119.011658.

...

参考文献をもっと見る