リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Discrimination of heavy elements originating from Pop III stars in z = 3 intergalactic medium」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Discrimination of heavy elements originating from Pop III stars in z = 3 intergalactic medium

梅村, 雅之 森, 正夫 Kirihara, Takanobu Hasegawa, Kenji Ishiyama, Tomoaki 筑波大学 DOI:10.1093/mnras/stz3376

2020.09.14

概要

We investigate the distribution of metals in the cosmological volume at z ∼ 3, in particular, provided by massive Population III (Pop III) stars using a cosmological N-body simulation in which a model of Pop III star formation is implemented. Owing to the simulation, we can choose minihaloes where Pop III star formation occurs at z > 10 and obtain the spatial distribution of the metals at lower redshifts. To evaluate the amount of heavy elements provided by Pop III stars, we consider metal yield of pair-instability or core-collapse supernovae (SNe) explosions of massive stars. By comparing our results to the Illustris-1 simulation, we find that heavy elements provided by Pop III stars often dominate those from galaxies in low-density regions. The median value of the volume averaged metallicity is Z∼10−4.5−−2Z⊙ at the regions. Spectroscopic observations with the next generation telescopes are expected to detect the metals imprinted on quasar spectra.

この論文で使われている画像

参考文献

Abel T., Anninos P., Norman M. L., Zhang Y., 1998, ApJ, 508, 518

Abel T., Bryan G. L., Norman M. L., 2002, Science, 295, 93

Ahn K., Iliev I. T., Shapiro P. R., Mellema G., Koda J., Mao Y., 2012, ApJ,

756, L16

Allende Prieto C., Lambert D. L., Asplund M., 2001, ApJ, 556, L63

Allende Prieto C., Lambert D. L., Asplund M., 2002, ApJ, 573, L137

Bromm V., Coppi P. S., Larson R. B., 2002, ApJ, 564, 23

Bromm V., Yoshida N., Hernquist L., McKee C. F., 2009, Nature, 459, 49

Cayrel R. et al., 2004, A&A, 416, 1117

Chiaki G., Susa H., Hirano S., 2018, MNRAS, 475, 4378

Choi J.-H., Nagamine K., 2011, MNRAS, 410, 2579

Chon S., Hosokawa T., 2019, MNRAS, 488, 2658

Cooke R., Pettini M., Steidel C. C., Rudie G. C., Nissen P. E., 2011, MNRAS,

417, 1534

D’Odorico V. et al., 2016, MNRAS, 463, 2690

Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292,

371

Ekstr¨om S., Meynet G., Chiappini C., Hirschi R., Maeder A., 2008, A&A,

489, 685

Fan X. et al., 2006, AJ, 132, 117

Frebel A., Norris J. E., 2015, ARA&A, 53, 631

Greif T. H., Bromm V., Clark P. C., Glover S. C. O., Smith R. J., Klessen R.

S., Yoshida N., Springel V., 2012, MNRAS, 424, 399

Grevesse N., Sauval A. J., 1998, Space Sci. Rev., 85, 161

Heger A., Woosley S. E., 2010, ApJ, 724, 341

Hirano S., Bromm V., 2018, MNRAS, 476, 3964

Hirano S., Hosokawa T., Yoshida N., Umeda H., Omukai K., Chiaki G.,

Yorke H. W., 2014, ApJ, 781, 60

Hirano S., Hosokawa T., Yoshida N., Omukai K., Yorke H. W., 2015,

MNRAS, 448, 568

Holweger H., 2001, in Wimmer-Schweingruber R. F., ed., AIP Conf. Ser.

Vol. 598, Joint SOHO/ACE workshop ‘Solar and Galactic Composition’. Am. Inst. Phys., New York, p. 23

Hosokawa T., Omukai K., Yoshida N., Yorke H. W., 2011, Science, 334,

1250

Hosokawa T., Hirano S., Kuiper R., Yorke H. W., Omukai K., Yoshida N.,

2016, ApJ, 824, 119

Ikeuchi S., Tomisaka K., Ostriker J. P., 1983, ApJ, 265, 583

Ishigaki M., Kawamata R., Ouchi M., Oguri M., Shimasaku K., Ono Y.,

2018, ApJ, 854, 73

Ishiyama T., Fukushige T., Makino J., 2009, PASJ, 61, 1319

Ishiyama T., Nitadori K., Makino J., 2012, preprint (arXiv:1211.4406)

Ishiyama T., Enoki M., Kobayashi M. A. R., Makiya R., Nagashima M.,

Oogi T., 2015, PASJ, 67, 61

Ishiyama T., Sudo K., Yokoi S., Hasegawa K., Tominaga N., Susa H., 2016,

ApJ, 826, 9

Jaacks J., Thompson R., Finkelstein S. L., Bromm V., 2018, MNRAS, 475,

4396

Kinugawa T., Inayoshi K., Hotokezaka K., Nakauchi D., Nakamura T., 2014,

MNRAS, 442, 2963

Kuiper R., Hosokawa T., 2018, A&A, 616, A101

Machacek M. E., Bryan G. L., Abel T., 2001, ApJ, 548, 509

Madau P., 2018, MNRAS, 480, L43

Madau P., Dickinson M., 2014, ARA&A, 52, 415

Madau P., Pozzetti L., Dickinson M., 1998, ApJ, 498, 106

Downloaded from https://academic.oup.com/mnras/article/491/3/4387/5651180 by University of Tsukuba user on 14 September 2020

metal with galactic metal quantitatively, we analysed the results

of Illustris-1 simulation. In Models (b) and (c), Pop III originated

heavy elements dominate in a region with 0  log(1 + δ cell )  1.3.

The corresponding median metal density is 10−34 g cm−3  ρZ <

10−33 g cm−3 . The metallicity of such region is ∼ 10−3.5 Z if we

adopt the gas mass fraction of b /(0 − b ) in its local overdensity.

Once star formation occurs, UV radiation in the Lyman–Werner

bands from the stars would suppress Pop III formation in surrounding minihaloes. Such a situation tends to occur in relatively active

star-forming regions. We reduce the effective star formation rate, but

the modelling does not depend on the environment. Further studies

focusing on the feedback process in the various environment are

required to update this point. The number of Pop III star-forming

minihaloes achieve numerical convergence as long as we run with

current models that are consistent with Hirano et al. (2015). A

similar convergence test has been conducted using hydrodynamic

simulations under different setup (Schauer et al. 2019). Multiple

Pop III star formation in each minihalo via fragmentation of

circumstellar disc (e.g. Turk, Abel & O’Shea 2009; Greif et al. 2012;

Susa 2019) can reduce the effective number of very massive stars.

It is required that statistically reliable IMF information is examined

using high-resolution cosmological hydrodynamic simulations of

Pop III stars. Observations of gravitational-wave events might limit

the fraction of multiple Pop III star formation in each minihalo

(Kinugawa et al. 2014; Tagawa et al. 2015).

Considering the effect of cosmic expansion for the IGM that the

ejecta sweeps up, the yield metals are gone off to the outward of

minihaloes. The environmental density of IGM would affect the

propagation (e.g. Ikeuchi, Tomisaka & Ostriker 1983). We analyse

the smoothed distribution of metals to the mesh-size (∼50 proper

kpc), therefore, the contribution of expanding radius of each shell

to the global distribution of metals is small. On the other hand, if

a Pop III hosting minihalo isolates until low redshift, the gas and

metals are expected to be observed as a localized absorber. In order

to estimate the accurate feasibility of detecting the metals taking

in such effects, further works of high spatial and time resolution

cosmological radiation hydrodynamic simulations are required.

We provide metal distribution originated in Pop III stars with

200 M or 30 M stars. This approach will be useful in expanding

our understanding of how the metals are distributed in the cosmic

volume. Although it has not been concluded that which mass

stars are typical or there exist several typical masses (e.g. Hirano

et al. 2015), we can obtain the region with a higher mass density

of heavy elements than galactic metals in all our modellings. It

is essential whether we can distinguish the Pop III yield heavy

elements and galactic metals when we observe Pop III originated

metal dominated regions. We take the elemental abundance pattern

of SNe into account and confirm that the observed metals should

have a characteristic elemental abundance pattern, which is not

originated in galactic metals, even for partially contaminated cases.

IGM metal enrichment via Pop III stars

Songaila A., 1997, ApJ, 490, L1

Springel V., 2010, MNRAS, 401, 791

Stacy A., Greif T. H., Bromm V., 2012, MNRAS, 422, 290

Susa H., 2019, ApJ, 877, 99

Susa H., Hasegawa K., Tominaga N., 2014, ApJ, 792, 32

Tagawa H., Umemura M., Gouda N., Yano T., Yamai Y., 2015, MNRAS,

451, 2174

Takada M. et al., 2014, PASJ, 66, R1

Tegmark M., Silk J., Rees M. J., Blanchard A., Abel T., Palla F., 1997, ApJ,

474, 1

Torrey P., Cox T. J., Kewley L., Hernquist L., 2013, in Sun W.-H., Xu C.

K., Scoville N. Z., Sanders D. B., eds, ASP Conf. Ser. Vol. 477, Galaxy

Mergers in an Evolving Universe. Astron. Soc. Pac., San Francisco, p.

237

Tully R. B., Fisher J. R., 1977, A&A, 500, 105

Turk M. J., Abel T., O’Shea B., 2009, Science, 325, 601

Vogelsberger M., Genel S., Sijacki D., Torrey P., Springel V., Hernquist L.,

2013, MNRAS, 436, 3031

Vogelsberger M. et al., 2014, MNRAS, 444, 1518

Whalen D. J., Fryer C. L., Holz D. E., Heger A., Woosley S. E., Stiavelli

M., Even W., Frey L. H., 2013, ApJ, 762, L6

Wise J. H., Turk M. J., Norman M. L., Abel T., 2012, ApJ, 745, 50

Yoshida N., Omukai K., Hernquist L., Abel T., 2006, ApJ, 652, 6

Yoshida N., Omukai K., Hernquist L., 2008, Science, 321, 669

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 491, 4387–4395 (2020)

Downloaded from https://academic.oup.com/mnras/article/491/3/4387/5651180 by University of Tsukuba user on 14 September 2020

Madau P., Ferrara A., Rees M. J., 2001, ApJ, 555, 92

Meynet G., Ekstr¨om S., Maeder A., 2006, A&A, 447, 623

Mori M., Ferrara A., Madau P., 2002, ApJ, 571, 40

Nakamura F., Umemura M., 2001, ApJ, 548, 19

Nelson D. et al., 2015, Astron. Comput., 13, 12

Nomoto K., Kobayashi C., Tominaga N., 2013, ARA&A, 51, 457

Omukai K., 2000, ApJ, 534, 809

Omukai K., Nishi R., 1998, ApJ, 508, 141

Omukai K., Palla F., 2001, ApJ, 561, L55

Omukai K., Palla F., 2003, ApJ, 589, 677

Oppenheimer B. D., Dav´e R., Katz N., Kollmeier J. A., Weinberg D. H.,

2012, MNRAS, 420, 829

Pˆaris I. et al., 2018, A&A, 613, A51

Penprase B. E., Prochaska J. X., Sargent W. L. W., Toro-Martinez I., Beeler

D. J., 2010, ApJ, 721, 1

Pillepich A. et al., 2018, MNRAS, 475, 648

Planck Collaboration XVI, 2014, A&A, 571, A16

Richards G. T. et al., 2009, ApJS, 180, 67

Ryan S. G., Norris J. E., Beers T. C., 1996, ApJ, 471, 254

Schauer A. T. P., Glover S. C. O., Klessen R. S., Ceverino D., 2019, MNRAS,

484, 3510

Schaye J., Aguirre A., Kim T.-S., Theuns T., Rauch M., Sargent W. L. W.,

2003, ApJ, 596, 768

Schaye J. et al., 2015, MNRAS, 446, 521

Schenker M. A. et al., 2013, ApJ, 768, 196

Schneider R., Ferrara A., Natarajan P., Omukai K., 2002, ApJ, 571,

30

Simcoe R. A., Sargent W. L. W., Rauch M., 2004, ApJ, 606, 92

4395

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る