リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Super-sample tidal effect on cosmological distortions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Super-sample tidal effect on cosmological distortions

秋津, 一之 東京大学 DOI:10.15083/0002004671

2022.06.22

概要

Although large-scale perturbations beyond a finite-volume survey region, called “super-sample modes”, are not direct observables, these affect measurements of clustering statistics of small-scale (sub-survey) perturbations in the large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this thesis we show that large-scale tides (super-sample tidal modes) induced by scalar perturbations cause apparent anisotropic distortions in the observed power spectrum of galaxies. Using the perturbation theory of structure formation, we derive a response function of the power spectrum to large-scale tides. In particular, we find that large-scale tides violates the statistical isotropy in the observed power spectrum and in the redshift-space power spectrum of galaxies this anisotropy depends on an alignment between the tide, wavevector of small-scale modes, and line-of-sight direction. We then quantify the impact of large-scale tides on estimation of cosmological distances (Alcock-Paczyński test) and the redshift-space distortion (RSD) parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher information matrix formalism. We show that a degradation in the parameter estimation of cosmological distortions is restored if we employ the prior on the rms amplitude expected for the standard ΛCDM model. We also discuss whether the super-sample tidal modes can be constrained and find that the super-sample tides are detectable with an accuracy better than the ΛCDM prediction without impairing the accuracy of measurements of other cosmological distortions by using bipolar spherical harmonic (BipoSH) decomposition formalism to characterize statistically anisotropic power spectra. In addition, we develop the cosmological N-body simulation with the super-sample tidal modes to study effects of the large-scale tides on nonlinear structure formation in deeply nonlinear regime where the perturbation theory breaks down.

参考文献

[1] A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B91 (1980) 99.

[2] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467.

[3] A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D23 (1981) 347.

[4] V. F. Mukhanov and G. V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532.

[5] E. L. Turner, Gravitational lensing limits on the cosmological constant in a flat universe, Astrophys. J. 365 (1990) L43.

[6] G. Efstathiou, W. J. Sutherland and S. J. Maddox, The cosmological constant and cold dark matter, Nature 348 (1990) 705.

[7] M. Fukugita and E. L. Turner, Gravitational lensing frequencies: Galaxy cross-sections and selection effects, Mon. Not. Roy. Astron. Soc. 253 (1991) 99.

[8] M. Fukugita and P. J. E. Peebles, Visibility of gravitational lenses and the cosmological constant problem, astro-ph/9305002.

[9] Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133].

[10] Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201].

[11] COBE collaboration, Structure in the COBE differential microwave radiometer first year maps, Astrophys. J. 396 (1992) L1.

[12] WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [1001.4538].

[13] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, 1807.06209.

[14] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [1607.03155].

[15] PFS Team collaboration, Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph, Publ. Astron. Soc. Jap. 66 (2014) R1 [1206.0737].

[16] LSST Science, LSST Project collaboration, LSST Science Book, Version 2.0, 0912.0201.

[17] DESI collaboration, The DESI Experiment Part I: Science,Targeting, and Survey Design, 1611.00036.

[18] D. Spergel et al., Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report, 1305.5422.

[19] EUCLID collaboration, Euclid Definition Study Report, 1110.3193.

[20] O. Dor´e et al., Cosmology with the SPHEREX All-Sky Spectral Survey, 1412.4872.

[21] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the universe and cosmological perturbation theory, Phys. Rept. 367 (2002) 1 [astro-ph/0112551].

[22] V. Desjacques, D. Jeong and F. Schmidt, Large-Scale Galaxy Bias, Phys. Rept. 733 (2018) 1 [1611.09787].

[23] R. Scoccimarro, Redshift-space distortions, pairwise velocities and nonlinearities, Phys. Rev. D70 (2004) 083007 [astro-ph/0407214].

[24] S. Dodelson, Modern Cosmology. Academic Press, Amsterdam, 2003.

[25] M. Takada and B. Jain, Three-point correlations in weak lensing surveys: Model predictions and applications, Mon. Not. Roy. Astron. Soc. 344 (2003) 857 [astro-ph/0304034].

[26] A. J. S. Hamilton, C. D. Rimes and R. Scoccimarro, On measuring the covariance matrix of the nonlinear power spectrum from simulations, Mon. Not. Roy. Astron. Soc. 371 (2006) 1188 [astro-ph/0511416].

[27] T. Baldauf, U. Seljak, L. Senatore and M. Zaldarriaga, Galaxy Bias and non-Linear Structure Formation in General Relativity, JCAP 1110 (2011) 031 [1106.5507].

[28] B. D. Sherwin and M. Zaldarriaga, The Shift of the Baryon Acoustic Oscillation Scale: A Simple Physical Picture, Phys. Rev. D85 (2012) 103523 [1202.3998].

[29] R. de Putter, C. Wagner, O. Mena, L. Verde and W. Percival, Thinking Outside the Box: Effects of Modes Larger than the Survey on Matter Power Spectrum Covariance, JCAP 1204 (2012) 019 [1111.6596].

[30] M. Takada and W. Hu, Power Spectrum Super-Sample Covariance, Phys. Rev. D87 (2013) 123504 [1302.6994].

[31] Y. Li, W. Hu and M. Takada, Super-Sample Covariance in Simulations, Phys. Rev. D89 (2014) 083519 [1401.0385].

[32] Y. Li, W. Hu and M. Takada, Super-Sample Signal, Phys. Rev. D90 (2014) 103530 [1408.1081].

[33] J. Carron and I. Szapudi, The impact of supersurvey modes on cosmological constraints from cosmic shear fields, Mon. Not. Roy. Astron. Soc. 447 (2015) 671 [1408.1744].

[34] R. Takahashi, S. Soma, M. Takada and I. Kayo, An optimal survey geometry of weak lensing survey: minimizing supersample covariance, Mon. Not. Roy. Astron. Soc. 444 (2014) 3473 [1405.2666].

[35] L. Dai, E. Pajer and F. Schmidt, On Separate Universes, JCAP 1510 (2015) 059 [1504.00351].

[36] H. Y. Ip and F. Schmidt, Large-Scale Tides in General Relativity, JCAP 1702 (2017) 025 [1610.01059].

[37] K. Akitsu, M. Takada and Y. Li, Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey, Phys. Rev. D95 (2017) 083522 [1611.04723].

[38] A. Barreira and F. Schmidt, Responses in Large-Scale Structure, JCAP 1706 (2017) 053 [1703.09212].

[39] K. C. Chan, A. Moradinezhad Dizgah and J. Nore˜na, Bispectrum Supersample Covariance, Phys. Rev. D97 (2018) 043532 [1709.02473].

[40] DES collaboration, Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses, Submitted to: Phys. Rev. D (2017) [1706.09359].

[41] A. Barreira, E. Krause and F. Schmidt, Complete super-sample lensing covariance in the response approach, JCAP 1806 (2018) 015 [1711.07467].

[42] N. Kaiser, Clustering in real space and in redshift space, Mon. Not. Roy. Astron. Soc. 227 (1987) 1.

[43] A. J. S. Hamilton, Linear redshift distortions: A Review, in Ringberg Workshop on Large Scale Structure Ringberg, Germany, September 23-28, 1996, 1997, astro-ph/9708102, DOI.

[44] C. Alcock and B. Paczy´nski, An evolution free test for non-zero cosmological constant, Nature 281 (1979) 358.

[45] H.-J. Seo and D. J. Eisenstein, Probing dark energy with baryonic acoustic oscillations from future large galaxy redshift surveys, Astrophys. J. 598 (2003) 720 [astro-ph/0307460].

[46] W. Hu and Z. Haiman, Redshifting rings of power, Phys. Rev. D68 (2003) 063004 [astro-ph/0306053].

[47] E. Sirko, Initial conditions to cosmological N-body simulations, or how to run an ensemble of simulations, Astrophys. J. 634 (2005) 728 [astro-ph/0503106].

[48] N. Y. Gnedin, A. V. Kravtsov and D. H. Rudd, Implementing the DC Mode in Cosmological Simulations with Supercomoving Variables, Astrophys. J. Suppl. 194 (2011) 46 [1104.1428].

[49] C. Wagner, F. Schmidt, C.-T. Chiang and E. Komatsu, Separate Universe Simulations, Mon. Not. Roy. Astron. Soc. 448 (2015) L11 [1409.6294].

[50] K. Akitsu and M. Takada, Impact of large-scale tides on cosmological distortions via redshift-space power spectrum, Phys. Rev. D97 (2018) 063527 [1711.00012].

[51] K. Akitsu, N. S. Sugiyama and M. Shiraishi, Super-sample tidal modes on the celestial sphere, Phys. Rev. D100 (2019) 103515 [1907.10591].

[52] S. Weinberg, Cosmological fluctuations of short wavelength, Astrophys. J. 581 (2002) 810 [astro-ph/0207375].

[53] D. H. Lyth, K. A. Malik and M. Sasaki, A General proof of the conservation of the curvature perturbation, JCAP 0505 (2005) 004 [astro-ph/0411220].

[54] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 1107 (2011) 034 [1104.2933].

[55] N. E. Chisari and M. Zaldarriaga, Connection between Newtonian simulations and general relativity, Phys. Rev. D83 (2011) 123505 [1101.3555].

[56] B. Jain and E. Bertschinger, Selfsimilar evolution of cosmological density fluctuations, Astrophys. J. 456 (1996) 43 [astro-ph/9503025].

[57] R. Scoccimarro and J. Frieman, Loop corrections in nonlinear cosmological perturbation theory 2. Two point statistics and selfsimilarity, Astrophys. J. 473 (1996) 620 [astro-ph/9602070].

[58] M. Peloso and M. Pietroni, Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure, JCAP 1305 (2013) 031 [1302.0223].

[59] A. Kehagias and A. Riotto, Symmetries and Consistency Relations in the Large Scale Structure of the Universe, Nucl. Phys. B873 (2013) 514 [1302.0130].

[60] J. J. M. Carrasco, S. Foreman, D. Green and L. Senatore, The 2-loop matter power spectrum and the IR-safe integrand, JCAP 1407 (2014) 056 [1304.4946].

[61] P. Creminelli, J. Nore˜na, M. Simonovi´c and F. Vernizzi, Single-Field Consistency Relations of Large Scale Structure, JCAP 1312 (2013) 025 [1309.3557].

[62] P. Valageas, Kinematic consistency relations of large-scale structures, Phys. Rev. D89 (2014) 083534 [1311.1236].

[63] R. Takahashi, Third Order Density Perturbation and One-loop Power Spectrum in a Dark Energy Dominated Universe, Prog. Theor. Phys. 120 (2008) 549 [0806.1437].

[64] J. N. Fry, The Minimal power spectrum: Higher order contributions, Astrophys. J. 421 (1994) 21.

[65] P. J. E. Peebles, The large-scale structure of the universe. Princeton Univ Press, 1980.

[66] T. Nishimichi, F. Bernardeau and A. Taruya, Response function of the large-scale structure of the universe to the small scale inhomogeneities, Phys. Lett. B762 (2016) 247 [1411.2970].

[67] N. Dalal, O. Dore, D. Huterer and A. Shirokov, The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D77 (2008) 123514 [0710.4560].

[68] N. Kaiser, On the Spatial correlations of Abell clusters, Astrophys. J. 284 (1984) L9.

[69] J. M. Bardeen, J. R. Bond, N. Kaiser and A. S. Szalay, The Statistics of Peaks of Gaussian Random Fields, Astrophys. J. 304 (1986) 15.

[70] J. R. Bond, S. Cole, G. Efstathiou and N. Kaiser, Excursion set mass functions for hierarchical Gaussian fluctuations, Astrophys. J. 379 (1991) 440.

[71] J. N. Fry and E. Gaztanaga, Biasing and hierarchical statistics in large scale structure, Astrophys. J. 413 (1993) 447 [astro-ph/9302009].

[72] K. C. Chan, R. Scoccimarro and R. K. Sheth, Gravity and Large-Scale Non-local Bias, Phys. Rev. D85 (2012) 083509 [1201.3614].

[73] T. Baldauf, U. Seljak, V. Desjacques and P. McDonald, Evidence for Quadratic Tidal Tensor Bias from the Halo Bispectrum, Phys. Rev. D86 (2012) 083540 [1201.4827].

[74] S. Saito, T. Baldauf, Z. Vlah, U. Seljak, T. Okumura and P. McDonald, Understanding higher-order nonlocal halo bias at large scales by combining the power spectrum with the bispectrum, Phys. Rev. D90 (2014) 123522 [1405.1447].

[75] M. Mirbabayi, F. Schmidt and M. Zaldarriaga, Biased Tracers and Time Evolution, JCAP 1507 (2015) 030 [1412.5169].

[76] R. Angulo, M. Fasiello, L. Senatore and Z. Vlah, On the Statistics of Biased Tracers in the Effective Field Theory of Large Scale Structures, JCAP 1509 (2015) 029 [1503.08826].

[77] P. McDonald, Clustering of dark matter tracers: Renormalizing the bias parameters, Phys. Rev. D74 (2006) 103512 [astro-ph/0609413].

[78] P. McDonald and A. Roy, Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS, JCAP 0908 (2009) 020 [0902.0991].

[79] F. Schmidt, D. Jeong and V. Desjacques, Peak-Background Split, Renormalization, and Galaxy Clustering, Phys. Rev. D88 (2013) 023515 [1212.0868].

[80] V. Assassi, D. Baumann, D. Green and M. Zaldarriaga, Renormalized Halo Bias, JCAP 1408 (2014) 056 [1402.5916].

[81] T. Matsubara and Y. Suto, Cosmological redshift distortion of correlation functions as a probe of the density parameter and the cosmological constant, Astrophys. J. 470 (1996) L1 [astro-ph/9604142].

[82] W. E. Ballinger, J. A. Peacock and A. F. Heavens, Measuring the cosmological constant with redshift surveys, Mon. Not. Roy. Astron. Soc. 282 (1996) 877 [astro-ph/9605017].

[83] N. Padmanabhan and M. J. White, Constraining Anisotropic Baryon Oscillations, Phys. Rev. D77 (2008) 123540 [0804.0799].

[84] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Anisotropic galaxy clustering in Fourier-space, Mon. Not. Roy. Astron. Soc. 466 (2017) 2242 [1607.03150].

[85] C.-T. Chiang, C. Wagner, F. Schmidt and E. Komatsu, Position-dependent power spectrum of the large-scale structure: a novel method to measure the squeezed-limit bispectrum, JCAP 1405 (2014) 048 [1403.3411].

[86] T. Nishimichi and P. Valageas, Redshift-space equal-time angular-averaged consistency relations of the gravitational dynamics, Phys. Rev. D92 (2015) 123510 [1503.06036].

[87] H. A. Feldman, N. Kaiser and J. A. Peacock, Power spectrum analysis of three-dimensional redshift surveys, Astrophys. J. 426 (1994) 23 [astro-ph/9304022].

[88] D. J. Eisenstein, H.-j. Seo, E. Sirko and D. Spergel, Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak, Astrophys. J. 664 (2007) 675 [astro-ph/0604362].

[89] D. J. Eisenstein, H.-j. Seo and M. J. White, On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter, Astrophys. J. 664 (2007) 660 [astro-ph/0604361].

[90] N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta et al., A 2 per cent distance to z=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427 (2012) 2132 [1202.0090].

[91] G. Jungman, M. Kamionkowski, A. Kosowsky and D. N. Spergel, Cosmological parameter determination with microwave background maps, Phys. Rev. D54 (1996) 1332 [astro-ph/9512139].

[92] T. Baldauf, U. Seljak, L. Senatore and M. Zaldarriaga, Linear response to long wavelength fluctuations using curvature simulations, JCAP 1609 (2016) 007 [1511.01465].

[93] Y. Li, M. Schmittfull and U. Seljak, Galaxy power-spectrum responses and redshift-space super-sample effect, JCAP 1802 (2018) 022 [1711.00018].

[94] C.-T. Chiang and A. Slosar, Power spectrum in the presence of large-scale overdensity and tidal fields: breaking azimuthal symmetry, 1804.02753.

[95] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonsky, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols. World Scientific, Singapore, 1988.

[96] M. Shiraishi, N. S. Sugiyama and T. Okumura, Polypolar spherical harmonic decomposition of galaxy correlators in redshift space: Toward testing cosmic rotational symmetry, Phys. Rev. D95 (2017) 063508 [1612.02645].

[97] N. S. Sugiyama, M. Shiraishi and T. Okumura, Limits on statistical anisotropy from BOSS DR12 galaxies using bipolar spherical harmonics, Mon. Not. Roy. Astron. Soc. 473 (2018) 2737 [1704.02868].

[98] N. Bartolo, A. Kehagias, M. Liguori, A. Riotto, M. Shiraishi and V. Tansella, Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra, Phys. Rev. D97 (2018) 023503 [1709.05695].

[99] A. S. Szalay, T. Matsubara and S. D. Landy, Redshift space distortions of the correlation function in wide angle galaxy surveys, Astrophys. J. 498 (1998) L1 [astro-ph/9712007].

[100] I. Szapudi, Wide angle redshift distortions revisited, Astrophys. J. 614 (2004) 51 [astro-ph/0404477].

[101] P. Papai and I. Szapudi, Non-Perturbative Effects of Geometry in Wide-Angle Redshift Distortions, Mon. Not. Roy. Astron. Soc. 389 (2008) 292 [0802.2940].

[102] D. Bertacca, R. Maartens, A. Raccanelli and C. Clarkson, Beyond the plane-parallel and Newtonian approach: Wide-angle redshift distortions and convergence in general relativity, JCAP 1210 (2012) 025 [1205.5221].

[103] A. Raccanelli, D. Bertacca, O. Dor´e and R. Maartens, Large-scale 3D galaxy correlation function and non-Gaussianity, JCAP 1408 (2014) 022 [1306.6646].

[104] N. S. Sugiyama, S. Saito, F. Beutler and H.-J. Seo, A complete FFT-based decomposition formalism for the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc. 484 (2019) 364 [1803.02132].

[105] Y. Li, W. Hu and M. Takada, Separate Universe Consistency Relation and Calibration of Halo Bias, Phys. Rev. D93 (2016) 063507 [1511.01454].

[106] T. Lazeyras, C. Wagner, T. Baldauf and F. Schmidt, Precision measurement of the local bias of dark matter halos, JCAP 1602 (2016) 018 [1511.01096].

[107] M. Crocce, S. Pueblas and R. Scoccimarro, Transients from Initial Conditions in Cosmological Simulations, Mon. Not. Roy. Astron. Soc. 373 (2006) 369 [astro-ph/0606505].

[108] Ya. B. Zeldovich, Gravitational instability: An Approximate theory for large density perturbations, Astron. Astrophys. 5 (1970) 84.

[109] V. Springel, The Cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364 (2005) 1105 [astro-ph/0505010].

[110] J. S. Bagla, A TreePM code for cosmological N-body simulations, J. Astrophys. Astron. 23 (2002) 185 [astro-ph/9911025].

[111] J. S. Bagla and S. Ray, Performance characteristics of treepm codes, New Astron. 8 (2003) 665 [astro-ph/0212129].

[112] T. R. Quinn, N. Katz, J. Stadel and G. Lake, Time stepping N body simulations, Submitted to: Astrophys. J. (1997) [astro-ph/9710043].

[113] D. Jamieson and M. LoVerde, Quintessential Isocurvature in Separate Universe Simulations, 1812.08765.

[114] E. Dimastrogiovanni, M. Fasiello, D. Jeong and M. Kamionkowski, Inflationary tensor fossils in large-scale structure, JCAP 1412 (2014) 050 [1407.8204].

[115] F. Schmidt, E. Pajer and M. Zaldarriaga, Large-Scale Structure and Gravitational Waves III: Tidal Effects, Phys. Rev. D89 (2014) 083507 [1312.5616].

[116] Y. Nan, K. Yamamoto, H. Aoki, S. Iso and D. Yamauchi, Large-scale inhomogeneity of dark energy produced in the ancestor vacuum, Phys. Rev. D99 (2019) 103512 [1901.11181].

[117] P. Catelan, M. Kamionkowski and R. D. Blandford, Intrinsic and extrinsic galaxy alignment, Mon. Not. Roy. Astron. Soc. 320 (2001) L7 [astro-ph/0005470].

[118] C. M. Hirata and U. Seljak, Intrinsic alignment-lensing interference as a contaminant of cosmic shear, Phys. Rev. D70 (2004) 063526 [astro-ph/0406275].

[119] M. Shiraishi, D. Nitta, S. Yokoyama, K. Ichiki and K. Takahashi, CMB Bispectrum from Primordial Scalar, Vector and Tensor non-Gaussianities, Prog. Theor. Phys. 125 (2011) 795 [1012.1079].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る