リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Observational Studies on Non-potential Magnetic Field in Solar Active Regions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Observational Studies on Non-potential Magnetic Field in Solar Active Regions

川畑, 佑典 東京大学 DOI:10.15083/0002004353

2022.06.22

概要

In the solar atmosphere, the regions where the strong magnetic field concentrates are called active regions. Active regions sometimes produce explosive events, such as solar flares and coronal mass ejections causing several influences to the geomagnetic environment. These explosive energy release events are produced by the energy stored in the magnetic field created by electric currents in the outer atmosphere, which is called a non-potential magnetic field. The main interest of this thesis is how the non-potential magnetic field is distributed in active regions. The measurements of the magnetic field have been mainly performed at the photospheric height. The coronal magnetic field measurements through polarimetric observations are difficult even with the state-of-art instruments. To overcome the difficulty, the nonlinear force-free field (NLFFF) modeling has been extensively used to infer the three-dimensional (3D) magnetic field in the solar corona. The main concept of the force-free field modeling is to extrapolate the coronal magnetic field from the spatial map of the magnetic field observed in the photosphere.

 We attempt to investigate the non-potential magnetic field and its 3D structure in active regions, while we tackle the technical problem in the NLFFF modeling. We focus on two different viewpoints with the NLFFF modeling and observations. One is the non-uniqueness of the solution and the other is the force-freeness of the photospheric magnetic field. The novelties in our studies are followings. (1)We investigate the dependency of the NLFFF calculation with respect to the initial guess of the 3D magnetic field. While previous studies often use potential field as the initial guess in the NLFFF modeling, we adopt the linear force-free fields with different constant force-free alpha as the initial guesses. This method enables us to investigate how unique the magnetic field obtained with the NLFFF extrapolation is. (2) We examine the direct measurements of the chromospheric magnetic field in the whole active regions through the spectropolarimetric observations at He I 10830 A° . The results of NLFFF extrapolation from the photosphere are compared with the direct measurements. The comparisons allow quantitative estimation of the NLFFF uncertainty.

 With these novelties, we obtained following findings. (1) The dependence of the initial condition of the NLFFF extrapolation is smaller in the strong magnetic field region. Therefore, the magnetic field at the lower height (< 10 Mm) tends to be less affected by the initial condition (correlation coefficient C > 0:9 with different initial condition), although the Lorentz force is concentrated at the lower height. The 10-100 times larger Lorentz force, which is normalized by the square of the magnetic field strength, remains at the lower height (< 10 Mm) than that at higher region (> 10 Mm). (2) Chromospheric magnetic field may have larger non-potentiality compared to the photospheric magnetic field. The large non-potentiality in the chromospheric height may not be reproduced by the NLFFF extrapolation from the photospheric magnetic field. The magnitude of the underestimation of the non-potentiality at the chromospheric height may reach 30-40 degree in signed shear angle. Our results indicate that while the NLFFF extrapolation produces unique result at the lower height, the non-potentiality is underestimated at the chromospheric height. From a comparative analysis of the chromospheric magnetic field and the NLFFF extrapolation for two active regions, we reveal that the magnetic field in the upper atmosphere may have higher non-potentiality than previously thought based on the NLFFF modeling. Our studies emphasize the importance of the chromospheric magnetic field measurements for more accurate 3D magnetic field modeling and the understanding of the non-potentiality in active regions corona. Because the non-potentiality is crucial in the MHD instability, our findings would improve the understanding of the onset mechanisms for solar flares and CMEs, which affect the environment in the solar system. In the current state, the chromospheric magnetic field observations in active regions are very few in number. We strongly suggest that we should make efforts to perform much more observations of the chromospheric magnetic field in flare-productive active regions with the future large aperture telescopes, giving improvement of the 3D magnetic field modeling.

参考文献

Alissandrakis, C. E. 1981, A&A, 100, 197

Amari, T., Canou, A., & Aly, J.-J. 2014, Nature, 514, 465

Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, ApJ, 510, 485 Aschwanden, M., De Pontieu, B., & Katrukha, E. 2013, Entropy, 15, 3007 Aschwanden, M. J. 2016, ApJS, 224, 25

Asensio Ramos, A., de la Cruz Rodr´ıguez, J., Mart´ınez Gonza´lez, M. J., & Socas-Navarro, H. 2017, A&A, 599, A133

Asensio Ramos, A., Trujillo Bueno, J., & Landi Degl’Innocenti, E. 2008, ApJ, 683, 542 Bamba, Y., & Kusano, K. 2018, ApJ, 856, 43

Bamba, Y., Kusano, K., Yamamoto, T. T., & Okamoto, T. J. 2013, ApJ, 778, 48 Beck, C., Schmidt, W., Kentischer, T., & Elmore, D. 2005, A&A, 437, 1159 Benz, A. O. 2017, Living Reviews in Solar Physics, 14, 2

Berger, M. A., & Prior, C. 2006, Journal of Physics A Mathematical General, 39, 8321 Bineau, M. 1972, Comm. Pure and Applied, 25, 77

Bobra, M. G., Sun, X., Hoeksema, J. T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., & Leka, K. D. 2014, Sol. Phys., 289, 3549

Borrero, J. M., & Ichimoto, K. 2011, Living Reviews in Solar Physics, 8, 4 Casini, R., Judge, P. G., & Schad, T. A. 2012, ApJ, 756, 194

Chiu, Y. T., & Hilton, H. H. 1977, ApJ, 212, 873

Chodura, R., & Schlueter, A. 1981, Journal of Computational Physics, 41, 68

Collados, M., Lagg, A., D´ıaz Garc´ı A, J. J., Herna´ndez Sua´rez, E., Lo´pez Lo´pez, R., Pa´ez Man˜a´, E., & Solanki, S. K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 368, The Physics of Chromospheric Plasmas, ed. P. Heinzel, I. Dorotovicˇ, & R. J. Rutten, Heinzel

Collados, M., Rodr´ıguez Hidalgo, I., Bellot Rubio, L., Ruiz Cobo, B., & Soltau, D. 1999, in Astronomische Gesellschaft Abstract Series, Vol. 15, Astronomische Gesellschaft Abstract Series, ed. R. E. Schielicke, 11

Collados, M. V. 2003, in Proc. SPIE, Vol. 4843, Polarimetry in Astronomy, ed. S. Fineschi, 55–65

de la Cruz Rodr´ıguez, J., & Socas-Navarro, H. 2011, A&A, 527, L8

de la Cruz Rodr´ıguez, J., & van Noort, M. 2017, Space Sci. Rev., 210, 109 De Rosa, M. L., et al. 2009, ApJ, 696, 1780

Dedner, A., Kemm, F., Kro¨ner, D., Munz, C.-D., Schnitzer, T., & Wesenberg, M. 2002, Journal of Computational Physics, 175, 645

del Toro Iniesta, J. C. 2007, Introduction to Spectropolarimetry Delbouille, L., Roland, G., Brault, J. W., & Testerman, L. 1981 DeRosa, M. L., et al. 2015, ApJ, 811, 107

Gary, G. A. 2001, Sol. Phys., 203, 71

Golub, L., et al. 2007, Sol. Phys., 243, 63

Grad, H., & Rubin, H. 1958, Journal of Nuclear Energy (1954), 7, 284

Hagyard, M. J., Teuber, D., West, E. A., & Smith, J. B. 1984, Sol. Phys., 91, 115 Hale, G. E. 1908, ApJ, 28, 315

Handy, B. N., et al. 1999, Sol. Phys., 187, 229 Ichimoto, K., et al. 2008, Sol. Phys., 249, 233

Imada, S., & Suematsu, Y. 2018, in 42nd COSPAR Scientific Assembly, Vol. 42, E2.2– 37–18

Inoue, S., Hayashi, K., Shiota, D., Magara, T., & Choe, G. S. 2013, ApJ, 770, 79 Inoue, S., Kusano, K., Bu¨chner, J., & Ska´la, J. 2018, Nature Communications, 9, 174

Inoue, S., Magara, T., Pandey, V. S., Shiota, D., Kusano, K., Choe, G. S., & Kim, K. S. 2014, ApJ, 780, 101

Inoue, S., Shiota, D., Yamamoto, T. T., Pandey, V. S., Magara, T., & Choe, G. S. 2012, ApJ, 760, 17

Ishiguro, N., & Kusano, K. 2017, ApJ, 843, 101

Jaeggli, S. A., Lin, H., Mickey, D. L., Kuhn, J. R., Hegwer, S. L., Rimmele, T. R., & Penn, M. J. 2010, MmSAI, 81, 763

Jiang, C., Wu, S. T., Feng, X., & Hu, Q. 2014, ApJ, 786, L16

Jing, J., Liu, C., Lee, J., Ji, H., Liu, N., Xu, Y., & Wang, H. 2018, ApJ, 864, 138

Joshi, J., Lagg, A., Hirzberger, J., & Solanki, S. K. 2017, A&A, 604, A98

Kawabata, Y., Iida, Y., Doi, T., Akiyama, S., Yashiro, S., & Shimizu, T. 2018, ApJ, 869, 99

Kawabata, Y., Inoue, S., & Shimizu, T. 2017, ApJ, 842, 106 Kliem, B., & To¨ro¨k, T. 2006, Physical Review Letters, 96, 255002 Kosugi, T., et al. 2007, Sol. Phys., 243, 3

Krall, K. R., Smith, Jr., J. B., Hagyard, M. J., West, E. A., & Cummings, N. P. 1982, Sol. Phys., 79, 59

Kruskal, M., & Schwarzschild, M. 1954, Proceedings of the Royal Society of London Series A, 223, 348

Kusano, K., Bamba, Y., Yamamoto, T. T., Iida, Y., Toriumi, S., & Asai, A. 2012, ApJ, 760, 31

Lagg, A., Woch, J., Krupp, N., & Solanki, S. K. 2004, A&A, 414, 1109

Landi Degl’Innocenti, E., & Landolfi, M., eds. 2004, Astrophysics and Space Science Library, Vol. 307, Polarization in Spectral Lines

Leka, K. D., Barnes, G., & Crouch, A. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 415, The Second Hinode Science Meeting: Beyond Discovery- Toward Understanding, ed. B. Lites, M. Cheung, T. Magara, J. Mariska, & K. Reeves, 365

Leka, K. D., Canfield, R. C., McClymont, A. N., & van Driel-Gesztelyi, L. 1996, ApJ, 462, 547

Lemen, J. R., et al. 2012, Sol. Phys., 275, 17

Lites, B. W., & Ichimoto, K. 2013, Sol. Phys., 283, 601

Lites, B. W., Socas-Navarro, H., Skumanich, A., & Shimizu, T. 2002, ApJ, 575, 1131 Lites, B. W., et al. 2013, Sol. Phys., 283, 579

Liu, S., Su, J. T., Zhang, H. Q., Deng, Y. Y., Gao, Y., Yang, X., & Mao, X. J. 2013, PASA, 30, e005

Low, B. C. 1985, in Measurements of Solar Vector Magnetic Fields, ed. M. J. Hagyard Mart´ınez-Sykora, J., De Pontieu, B., Carlsson, M., & Hansteen, V. 2016, ApJ, 831, L1 Merenda, L., Lagg, A., & Solanki, S. K. 2011, A&A, 532, A63

Metcalf, T. R. 1994, Sol. Phys., 155, 235

Metcalf, T. R., Jiao, L., McClymont, A. N., Canfield, R. C., & Uitenbroek, H. 1995, ApJ, 439, 474

Metcalf, T. R., et al. 2008, Sol. Phys., 247, 269

Mikic, Z., & McClymont, A. N. 1994, in Astronomical Society of the Pacific Conference Series, Vol. 68, Solar Active Region Evolution: Comparing Models with Observations, ed. K. S. Balasubramaniam & G. W. Simon, 225

Moon, Y.-J., Choe, G. S., Yun, H. S., Park, Y. D., & Mickey, D. L. 2002, ApJ, 568, 422

Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. 2001, ApJ, 552, 833 Muhamad, J., Kusano, K., Inoue, S., & Bamba, Y. 2018, ApJ, 863, 162 Muhamad, J., Kusano, K., Inoue, S., & Shiota, D. 2017, ApJ, 842, 86

Myers, C. E., Yamada, M., Ji, H., Yoo, J., Fox, W., Jara-Almonte, J., Savcheva, A., & Deluca, E. E. 2015, Nature, 528, 526

Nakagawa, Y. 1974, ApJ, 190, 437

Parker, E. N. 1974, ApJ, 191, 245

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Sol. Phys., 275, 3

Pevtsov, A. A., Canfield, R. C., & McClymont, A. N. 1997, ApJ, 481, 973

Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R. 1995, ApJ, 440, L109

Priest, E. 2014, Magnetohydrodynamics of the Sun Re´gnier, S., & Amari, T. 2004, A&A, 425, 345

Rempel, M., & Schlichenmaier, R. 2011, Living Reviews in Solar Physics, 8, 3 Savcheva, A. S., van Ballegooijen, A. A., & DeLuca, E. E. 2012, ApJ, 744, 78 Schad, T. A., Penn, M. J., & Lin, H. 2013, ApJ, 768, 111

Schad, T. A., Penn, M. J., Lin, H., & Tritschler, A. 2015, Sol. Phys., 290, 1607 Schlichenmaier, R. 2009, Space Sci. Rev., 144, 213

Schou, J., et al. 2012, Sol. Phys., 275, 229 Schrijver, C. J., et al. 2006, Sol. Phys., 235, 161 —. 2008, ApJ, 675, 1637

Shimizu, T., et al. 2008, Sol. Phys., 249, 221

Socas-Navarro, H. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 236, Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, ed. M. Sigwarth, 487

Solanki, S. K. 2003, A&A Rv, 11, 153

Solanki, S. K., Lagg, A., Woch, J., Krupp, N., & Collados, M. 2003, Nature, 425, 692 Suematsu, Y., Katsukawa, Y., Shimizu, T., Ichimoto, K., Horiuchi, T., Matsumoto, Y., & Takeyama, N. 2017, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10565, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 105650R

Suematsu, Y., et al. 2008, Sol. Phys., 249, 197

Sun, X., Hoeksema, J. T., Liu, Y., Wiegelmann,

T., Hayashi, K., Chen, Q., & Thalmann, J. 2012, ApJ, 748, 77

Thalmann, J. K., Tiwari, S. K., & Wiegelmann, T. 2013, ApJ, 769, 59

Title, A. M., Frank, Z. A., Shine, R. A., Tarbell, T. D., Topka, K. P., Scharmer, G., & Schmidt, W. 1993, ApJ, 403, 780

Titov, V. S. 2007, ApJ, 660, 863

Tiwari, S. K., Venkatakrishnan, P., Gosain, S., & Joshi, J. 2009a, ApJ, 700, 199 Tiwari, S. K., Venkatakrishnan, P., & Sankarasubramanian, K. 2009b, ApJ, 702, L133 To¨ro¨k, T., Kliem, B., & Titov, V. S. 2004, A&A, 413, L27

Tritschler, A., et al. 2016, Astronomische Nachrichten, 337, 1064

Trujillo Bueno, J. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 236, Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, ed. M. Sigwarth, 161

Trujillo Bueno, J. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner, 551 Tsuneta, S., et al. 2008, Sol. Phys., 249, 167

Valori, G., Green, L. M., De´moulin, P., Vargas Dom´ınguez, S., van Driel-Gesztelyi, L., Wallace, A., Baker, D., & Fuhrmann, M. 2012, Sol. Phys., 278, 73

van Driel-Gesztelyi, L., & Green, L. M. 2015, Living Reviews in Solar Physics, 12, 1 Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635

Wang, H., et al. 2017, Nature Astronomy, 1, 0085

Wang, R., Liu, Y. D., Yang, Z., & Hu, H. 2014, ApJ, 791, 84

Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G. 2000, ApJ, 540, 1150 Wiegelmann, T., Inhester, B., & Sakurai, T. 2006, Sol. Phys., 233, 215 Wiegelmann, T., & Neukirch, T. 2006, A&A, 457, 1053

Wiegelmann, T., & Sakurai, T. 2012, Living Reviews in Solar Physics, 9, 5

Wiegelmann, T., Thalmann, J. K., Schrijver, C. J., De Rosa, M. L., & Metcalf, T. R. 2008, Sol. Phys., 247, 249

Xu, Z., Lagg, A., Solanki, S., & Liu, Y. 2012, ApJ, 749, 138

Yamamoto, T. T., & Kusano, K. 2012, ApJ, 752, 126

Yelles Chaouche, L., Kuckein, C., Mart´ınez Pillet, V., & Moreno-Insertis, F. 2012, ApJ, 748, 23

Zhang, X. M., Zhang, M., & Su, J. T. 2017, ApJ, 834, 80

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る