リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Seismic evidence for a thermochemical mantle plume underplating the lithosphere of the Ontong Java Plateau」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Seismic evidence for a thermochemical mantle plume underplating the lithosphere of the Ontong Java Plateau

Isse, Takehi Suetsugu, Daisuke Ishikawa, Akira Shiobara, Hajime Sugioka, Hiroko Ito, Aki Kawano, Yuki Yoshizawa, Kazunori Ishihara, Yasushi Tanaka, Satoru Obayashi, Masayuki Tonegawa, Takashi Yoshimitsu, Junko 神戸大学

2021.05.24

概要

The Ontong Java Plateau in the western Pacific Ocean is the world’s largest oceanic plateau. It was formed 122 million years ago by a massive volcanic event that significantly affected Earth’s environment. The cause of the magmatic event remains controversial because the upper mantle structure beneath the plateau is poorly known. Here we use passive seismic data obtained through seafloor observations, alongside existing seismic data, to determine the three-dimensional radially anisotropic shear wave velocity to depths of up to 300 km. We find that the lithosphere–asthenosphere boundary is approximately 40 km deeper beneath the centre of the Ontong Java Plateau than beneath the surrounding seafloor. Based on our results and petrological and rheological constraints, we propose that the lithosphere–asthenosphere boundary has deepened as a result of underplating of dehydrated residual material beneath the pre-existing lithosphere during formation of the Ontong Java Plateau by a thermochemical mantle plume.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Data. We collected seismic waveform data recorded by the OJP array for earthquakes with moment magnitudes (Mw) greater than 5.5 in the western Pacific

Ocean to analyse the upper mantle shear wave structure beneath the OJP. As these

data alone do not suffice for this purpose, we also collected seismic data recorded

on land and on the seafloor in the western Pacific Ocean (Supplementary Fig. 1).

These data are distributed by the Ocean Hemisphere network Project (OHP) and

the Incorporated Research Institutions for Seismology Data Management Center

(IRIS DMC), which were collected for earthquakes between 1990 and 2016. The

study region in the western Pacific Ocean is similar to that of another recent

study17 in which only seismic data from land stations were used. Here, we used

seafloor observation data recorded by BBOBSs as well as land data from a total of

161 stations, of which 115 are BBOBS stations (Supplementary Fig. 1). Vertical

component seismograms recorded on the seafloor are contaminated by tilt noise

caused by leaks of a high degree of noise in the horizontal components induced by

seafloor currents57 and compliance noise induced by the infragravity waves that are

also recorded by seafloor pressure data58. We removed this noise from the BBOBS

station data in the OJP array by applying a spectral transfer function between the

vertical and horizontal components and between the vertical and pressure components, respectively.

16.

17.

18.

19.

20.

21.

22.

Data availability

The tomography model (OJP-S-isse) used in this study is available in the Researchgate

repository (https://www.researchgate.net/publication/351061906_OJP-S-Isse, https://doi.

org/10.13140/RG.2.2.29857.94561/1) and in the supplementary data 1.

23.

Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure,

dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

Furumoto, A. S., Webb, J. P., Odegard, M. E. & Hussong, D. M. Seismic

studies on the Ontong Java Plateau, 1970. Tectonophysics 34, 71–90 (1976).

Gladczenko, T. P., Coffin, M. F. & Eldholm, O. Crustal structure of the

Ontong Java Plateau: modeling of new gravity and existing seismic data. J.

Geophys. Res. Solid Earth 102, 22711–22729 (1997).

Tonegawa, T. et al. Characterization of crustal and uppermost‐mantle seismic

discontinuities in the Ontong Java Plateau. J. Geophys. Res. Solid Earth 124,

7155–7170 (2019).

Tejada, M. L. G., Mahoney, J. J., Duncan, R. A. & Hawkins, M. P. Age and

geochemistry of basement and alkalic rocks of Malaita and Santa Isabel,

Solomon Islands, Southern Margin of Ontong Java Plateau. J. Petrol. 37,

361–394 (1996).

Mahoney, J. J. et al. Proceedings of the Ocean Drilling Program, Vol. 192.

Initial Reports. Basement Drilling of the Ontong Java Plateau. (2001) https://

doi.org/10.2973/odp.proc.ir.192.2001

Thordarson, T. Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192

Site 1184: A record of subaerial phreatomagmatic eruptions on the Ontong

Java Plateau in Origin and evolution of the Ontong Java Plateau (eds: Fitton, J.

G. et al.) 133–150 (Geological Society, London, Special Publication 229, 2004).

Neal, C. R., Mahoney, J. J., Kroenke, L. W., Duncan, R. A. & Petterson, M. G.

The Ontong Java Plateau in Large Igneous Provinces: continental, oceanic, and

planetary flood volcanism (eds. Mahoney, J. J. & Coffin, M. F.) 100, 183–216,

(AGU, 1997).

Ishikawa, A., Maruyama, S. & Komiya, T. Layered lithospheric mantle beneath

the Ontong Java Plateau: Implications from xenoliths in Alnöite, Malaita,

Solomon Islands. J. Petrol. 45, 2011–2044 (2004).

Tejada, M. L. G. et al. Pin- pricking the elephant: Evidence on the origin of the

Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg

192 basalts in Origin and evolution of the Ontong Java Plateau (eds.: Fitton, J.

G. et al.) 133–150 (Geological Society, London, Special Publication 229, 2004).

Korenaga, J. Why did not the Ontong Java Plateau form subaerially? Earth

Planet. Sci. Lett. 234, 385–399 (2005).

Ingle, S. & Coffin, M. F. Impact origin for the greater Ontong Java Plateau?

Earth Planet. Sci. Lett. 218, 123–134 (2004).

Stern, T., Lamb, S., Moore, J. D. P., Okaya, D. & Hochmuth, K. High mantle

seismic P-wave speeds as a signature for gravitational spreading of

superplumes. Sci. Adv. 6, eaba7118 (2020).

Taylor, B. The single largest oceanic plateau: Ontong

Java–Manihiki–Hikurangi. Earth Planet. Sci. Lett. 241, 372–380 (2006).

Richardson, W. P., Okal, E. A. & Van der Lee, S. Rayleigh–wave tomography

of the Ontong–Java Plateau. Phys. Earth Planet. Inter. 118, 29–51 (2000).

Klosko, E. R., Russo, R. M., Okal, E. A. & Richardson, W. P. Evidence for a

rheologically strong chemical mantle root beneath the Ontong–Java Plateau.

Earth Planet. Sci. Lett. 186, 347–361 (2001).

Covellone, B. M., Savage, B. & Shen, Y. Seismic wave speed structure of the

Ontong Java Plateau. Earth Planet. Sci. Lett. 420, 140–150 (2015).

Suetsugu, D. et al. The OJP array: seismological and electromagnetic

observation on seafloor and islands in the Ontong Java Plateau. JAMSTEC

Rep. Res. Dev. 26, 54–64 (2018).

Nettles, M. & Dziewoński, A. M. Radially anisotropic shear velocity structure

of the upper mantle globally and beneath North America. J. Geophys. Res. 113,

B02303 (2008).

Isse, T. et al. Surface wave tomography for the Pacific Ocean incorporating

seafloor seismic observations and plate thermal evolution. Earth Planet. Sci.

Lett. 510, 116–130 (2019).

Tharimena, S., Rychert, C. A., Harmon, N. & White, P. Imaging Pacific

lithosphere seismic discontinuities—Insights from SS precursor modeling. J.

Geophys. Res. 122, 2131–2152 (2017).

Tharimena, S., Rychert, C. A. & Harmon, N. Seismic imaging of a midlithospheric discontinuity beneath Ontong Java Plateau. Earth Planet. Sci. Lett.

450, 62–70 (2016).

Mochizuki, K., Coffin, M. F., Eldholm, O. & Taira, A. Massive Early

Cretaceous volcanic activity in the Nauru Basin related to emplacement of the

Ontong Java Plateau. Geochem. Geophys. Geosyst. 6, Q10003 (2005).

COMMUNICATIONS EARTH & ENVIRONMENT | (2021)2:98 | https://doi.org/10.1038/s43247-021-00169-9 | www.nature.com/commsenv

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00169-9

24. Miura, S. et al. Deep seismic investigation of the Ontong Java Plateau. Eos,

Trans. AGU 92, 61–62 (2011).

25. Gomer, B. M. & Okal, E. A. Multiple-ScS probing of the Ontong-Java Plateau.

Phys. Earth Planet. Inter. 138, 317–331 (2003).

26. Suetsugu, D. et al. High Q ScS beneath the Ontong Java Plateau. Earth Planets

Space 71, 97 (2019).

27. Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and

heat flow with lithospheric age. Nature 359, 123–129 (1992).

28. Ishikawa, A., Nakamura, E. & Mahoney, J. J. Jurassic oceanic lithosphere

beneath the southern Ontong Java Plateau: evidence from xenoliths in alnöite,

Malaita, Solomon Islands. Geology 33, 393–396 (2005).

29. Parsons, B. & Sclater, J. G. An analysis of the variation of ocean floor

bathymetry and heat flow with age. J. Geophys. Res. 82, 803–827 (1977).

30. Huang, J. & Zhong, S. Sublithospheric small-scale convection and its

implications for the residual topography at old ocean basins and the plate

model. J. Geophys. Res. 110, B05404 (2005).

31. Tommasi, A. & Ishikawa, A. Microstructures, composition, and seismic

properties of the Ontong Java Plateau mantle root. Geochem. Geophys.

Geosyst. 15, 4547–4569 (2014).

32. Ishikawa, A., Kuritani, T., Makishima, A. & Nakamura, E. Ancient recycled

crust beneath the Ontong Java Plateau: isotopic evidence from the garnet

clinopyroxenite xenoliths, Malaita, Solomon Islands. Earth Planet. Sci. Lett.

259, 134–148 (2007).

33. Ishikawa, A., Pearson, D. G. & Dale, C. W. Ancient Os isotope signatures from

the Ontong Java Plateau lithosphere: tracing lithospheric accretion history.

Earth Planet. Sci. Lett. 301, 159–170 (2011).

34. Tejada, M. L. G., Ravizza, G., Suzuki, K. & Paquay, F. S. An extraterrestrial

trigger for the Early Cretaceous massive volcanism? Evidence from the paleoTethys Ocean. Sci. Rep. 2, 268 (2012).

35. Kerr, A. C. & Mahoney, J. J. Oceanic plateaus: Problematic plumes, potential

paradigms. Chem. Geol. 241, 332–353 (2007).

36. Fitton, J. G. & Godard, M. Origin and evolution of magmas on the Ontong

Java Plateau in Origin and evolution of the Ontong Java Plateau (eds.: Fitton, J.

G. et al.) 151–178 (Geological Society, London, Special Publication 229, 2004).

37. Herzberg, C. Partial melting below the Ontong Java Plateau in Origin and

evolution of the Ontong Java Plateau (eds.: Fitton, J. G. et al.) 179–183

(Geological Society, London, Special Publication 229, 2004).

38. Chazey, W. J. & Neal, C. R. Large igneous province magma petrogenesis from

source to surface: Platinum-group element evidence from Ontong Java Plateau

basalts recovered during ODP Legs 130 and 192 in Origin and evolution of the

Ontong Java Plateau (eds. Fitton, J. G. et al.) 219–238 (Geological Society,

London, Special Publication 229, 2004).

39. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived

melts. Science 316, 412–417 (2007).

40. Tejada, M. L. G. et al. Cryptic lower crustal signature in the source of the

Ontong Java Plateau revealed by Os and Hf isotopes. Earth Planet. Sci. Lett.

377-378, 84–96 (2013).

41. Sano, T. et al. Testing the Ontong Java Nui Hypothesis: The Largest

Supervolcano ever on the Earth. J. Geography, 130, Japanese with English

abstract (2021).

42. Mahoney, J. J. & Spencer, K. J. Isotopic evidence for the origin of the Manihiki and

Ontong Java oceanic plateaus. Earth Planet. Sci. Lett. 104, 196–210 (1991).

43. Jones, A. P., Wunemann, K. & Price, G. D. Modeling impact volcanism as a

possible origin for the Ontong Java Plateau in Plates, plumes and paradigms

(eds. Foulger, G. R., Natland, J. H., Presnall, D. C. & Anderson, D. L.), 711720, (Geological Society of America, Special Paper 388, 2005).

44. Elkins-Tanton, L. T., Hager, B. H. & Grove, T. L. Magmatic effects of the lunar

late heavy bombardment. Earth Planet. Sci. Lett. 222, 17–27 (2004).

45. Demouchy, S., Ishikawa, A., Tommasi, A., Alard, O. & Keshav, S.

Characterization of hydration in the mantle lithosphere: Peridotite xenoliths

from the Ontong Java Plateau as an example. Lithos 212–215, 189–201 (2015).

46. Mackwell, S. J., Kohlstedt, D. L. & Paterson, M. S. The role of water in the

deformation of olivine single crystals. J. Geophys. Res. Solid Earth 90,

11319–11333 (1985).

47. Yamamoto, M., Phipps Morgan, J. & Morgan, W. J. Global plume-fed

asthenosphere flow—I: Motivation and model development in Special Paper

430: Plates, Plumes and Planetary Processes 430, 165–188 (Geological Society

of America, 2007).

48. Rychert, C. A., Harmon, N. & Tharimena, S. Seismic Imaging of the Base of the

Ocean Plates in Lithospheric discontinuities (eds. Yuan, H. & Romanowicz, B.)

71–87, https://doi.org/10.1002/9781119249740.ch4 (John Wiley & Sons, 2018).

49. Karato, S., & Park, J. On the origin of the upper mantle seismic discontinuities

in Lithospheric discontinuities (eds.: Yuan, H. & Romanowicz, B.) 5–34,

https://doi.org/10.1002/9781119249740.ch1 (John Wiley & Sons, 2018).

50. Yuan, H. & Romanowicz, B. Lithospheric discontinuities. (John Wiley & Sons,

2018). https://doi.org/10.1002/9781119249740.

ARTICLE

51. Peslier, A. H., Woodland, A. B., Bell, D. R. & Lazarov, M. Olivine water

contents in the continental lithosphere and the longevity of cratons. Nature

467, 78–81 (2010).

52. Yoshizawa, K. & Ekström, G. Automated multimode phase speed

measurements for high-resolution regional-scale tomography: application to

North America. Geophys. J. Int. 183, 1538–1558 (2010).

53. Yoshizawa, K. Radially anisotropic 3-D shear wave structure of the Australian

lithosphere and asthenosphere from multi-mode surface waves. Phys. Earth

Planet. Inter. 235, 33–48 (2014).

54. Wessel, P. & Smith, W. H. F. New, improved version of Generic Mapping

Tools released. EOS Trans. AGU 79, 579 (1998).

55. Kawakatsu, H. et al. Seismic evidence for sharp lithosphere-asthenosphere

boundaries of oceanic plates. Science 324, 499–502 (2009).

56. Burgos, G. et al. Oceanic lithosphere-asthenosphere boundary from surface

wave dispersion data. J. Geophys. Res. Solid Earth 119, 1079–1093 (2014).

57. Crawford, W. C. & Webb, S. C. Identifying and removing tilt noise from lowfrequency (<0.1 Hz) seafloor vertical seismic data. Bull. Seismol. Soc. Am. 90,

952–963 (2000).

58. Webb, S. C. & Crawford, W. C. Long-period seafloor seismology and

deformation under ocean waves. Bull. Seismol. Soc. Am. 89, 1535–1542 (1999).

59. Steinberger, B. Plumes in a convecting mantle: Models and observations for

individual hotspots. J. Geophys. Res. 105, 11127–11152 (2000).

60. International Seismological Centre (2020), On-line Bulletin, https://doi.org/

10.31905/D808B830.

Acknowledgements

We are grateful to the captains and crews of the R/V MIRAI and R/V HAKUHO-MARU

of JAMSTEC for the installation and recovery cruises, respectively. Their devoted efforts

led to the success of the OJP array observation. We thank four reviewers for constructive

reviews that improved the manuscript. This study was supported by a Grant-in-Aid for

Scientific Research (15H03720) from the Japan Society for the Promotion of Science and

Grants for Operating Expenses of JAMSTEC and the University of Tokyo.

Author contributions

T.I. performed the seafloor observation, analysed the data, and wrote the manuscript.

D.S. organised the OJP Array seafloor observation and wrote the manuscript. A.I.S.

interpreted and wrote the section on the petrological results. H.S.H., H.S.U., and A.I.T.

performed the seafloor observations. Y.K. developed the code for noise reduction of the

seismological data. K.Y. developed the code for surface wave analysis. Y.I., S.T., M.O.,

T.T., and J.Y. organised and performed the island observations. All authors read and

approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s43247-021-00169-9.

Correspondence and requests for materials should be addressed to T.I.

Peer review information Primary handling editor: Joe Aslin

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

COMMUNICATIONS EARTH & ENVIRONMENT | (2021)2:98 | https://doi.org/10.1038/s43247-021-00169-9 | www.nature.com/commsenv

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る