リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li₃NbO₄–NiO Binary System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li₃NbO₄–NiO Binary System

Fukuma, Ryutaro Harada, Maho Zhao, Wenwen Sawamura, Miho Noda, Yusuke Nakayama, Masanobu Goto, Masato Kan, Daisuke Shimakawa, Yuichi Yonemura, Masao Ikeda, Naohiro Watanuki, Ryuta Andersen, Henrik L. D’Angelo, Anita M. Sharma, Neeraj Park, Jiwon Byon, Hye Ryung Fukuyama, Sayuri Han, Zhenji Fukumitsu, Hitoshi Schulz-Dobrick, Martin Yamanaka, Keisuke Yamagishi, Hirona Ohta, Toshiaki Yabuuchi, Naoaki 京都大学 DOI:10.1021/acscentsci.2c00238

2022.06.22

概要

Dependence on lithium-ion batteries for automobile applications is rapidly increasing. The emerging use of anionic redox can boost the energy density of batteries, but the fundamental origin of anionic redox is still under debate. Moreover, to realize anionic redox, many reported electrode materials rely on manganese ions through π-type interactions with oxygen. Here, through a systematic experimental and theoretical study on a binary system of Li₃NbO₄–NiO, we demonstrate for the first time the unexpectedly large contribution of oxygen to charge compensation for electrochemical oxidation in Ni-based materials. In general, for Ni-based materials, e.g., LiNiO₂, charge compensation is achieved mainly by Ni oxidation, with a lower contribution from oxygen. In contrast, for Li₃NbO₄–NiO, oxygen-based charge compensation is triggered by structural disordering and σ-type interactions with nickel ions, which are associated with a unique environment for oxygen, i.e., a linear Ni–O–Ni configuration in the disordered system. Reversible anionic redox with a small hysteretic behavior was achieved for LiNi₂/₃Nb₁/₃O₂ with a cation-disordered Li/Ni arrangement. Further Li enrichment in the structure destabilizes anionic redox and leads to irreversible oxygen loss due to the disappearance of the linear Ni–O–Ni configuration and the formation of unstable Ni ions with high oxidation states. On the basis of these results, we discuss the possibility of using σ-type interactions for anionic redox to design advanced electrode materials for high-energy lithium-ion batteries.

この論文で使われている画像

参考文献

(1) Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li

batteries. Chem. Mater. 2010, 22, 587−603.

791

https://doi.org/10.1021/acscentsci.2c00238

ACS Cent. Sci. 2022, 8, 775−794

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

ACS Central Science

http://pubs.acs.org/journal/acscii

Research Article

Disordered Cathode Materials upon Fluorine Substitution. Adv. Energy

Mater. 2019, 9, 1802959.

(36) Okuoka, S.; Ogasawara, Y.; Suga, Y.; Hibino, M.; Kudo, T.; Ono,

H.; Yonehara, K.; Sumida, Y.; Yamada, Y.; Yamada, A.; Oshima, M.;

Tochigi, E.; Shibata, N.; Ikuhara, Y.; Mizuno, N. A New Sealed LithiumPeroxide Battery with a Co-Doped Li2O Cathode in a Superconcentrated Lithium Bis(fluorosulfonyl)amide Electrolyte. Sci. Rep.

2015, 4, 5684.

(37) Kobayashi, H.; Hibino, M.; Ogasawara, Y.; Yamaguchi, K.; Kudo,

T.; Okuoka, S.-i.; Yonehara, K.; Ono, H.; Sumida, Y.; Oshima, M.;

Mizuno, N. Improved performance of Co-doped Li2O cathodes for

lithium-peroxide batteries using LiCoO2 as a dopant source. J. Power

Sources 2016, 306, 567−572.

(38) Zhan, C.; Yao, Z.; Lu, J.; Ma, L.; Maroni, V. A.; Li, L.; Lee, E.; Alp,

E. E.; Wu, T.; Wen, J.; Ren, Y.; Johnson, C.; Thackeray, M. M.; Chan,

M. K. Y.; Wolverton, C.; Amine, K. Enabling the high capacity of

lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic

and cationic redox. Nature Energy 2017, 2, 963−971.

(39) Zhu, Z.; Kushima, A.; Yin, Z.; Qi, L.; Amine, K.; Lu, J.; Li, J.

Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016,

1, 16111.

(40) Zheng, J.; Teng, G.; Yang, J.; Xu, M.; Yao, Q.; Zhuo, Z.; Yang, W.;

Liu, Q.; Pan, F. Mechanism of Exact Transition between Cationic and

Anionic Redox Activities in Cathode Material Li2FeSiO4. J. Phys. Chem.

Lett. 2018, 9, 6262−6268.

(41) Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. The

structural and chemical origin of the oxygen redox activity in layered

and cation-disordered Li-excess cathode materials. Nat. Chemi 2016, 8,

692−697.

(42) Maitra, U.; House, R. A.; Somerville, J. W.; Tapia-Ruiz, N.;

Lozano, J. G.; Guerrini, N.; Hao, R.; Luo, K.; Jin, L.; Pérez-Osorio, M.

A.; Massel, F.; Pickup, D. M.; Ramos, S.; Lu, X.; McNally, D. E.;

Chadwick, A. V.; Giustino, F.; Schmitt, T.; Duda, L. C.; Roberts, M. R.;

Bruce, P. G. Oxygen redox chemistry without excess alkali-metal ions in

Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 2018, 10, 288.

(43) Yabuuchi, N. Solid-state Redox Reaction of Oxide Ions for

Rechargeable Batteries. Chem. Lett. 2017, 46, 412−422.

(44) Okubo, M.; Yamada, A. Molecular Orbital Principles of OxygenRedox Battery Electrodes. ACS Appl. Mater. Interfaces 2017, 9, 36463−

36472.

(45) Sudayama, T.; Uehara, K.; Mukai, T.; Asakura, D.; Shi, X.-M.;

Tsuchimoto, A.; Mortemard de Boisse, B.; Shimada, T.; Watanabe, E.;

Harada, Y.; Nakayama, M.; Okubo, M.; Yamada, A. Multiorbital bond

formation for stable oxygen-redox reaction in battery electrodes. Energy

Environ. Sci. 2020, 13, 1492−1500.

(46) Yabuuchi, N.; Takeuchi, M.; Nakayama, M.; Shiiba, H.; Ogawa,

M.; Nakayama, K.; Ohta, T.; Endo, D.; Ozaki, T.; Inamasu, T.; Sato, K.;

Komaba, S. High-capacity electrode materials for rechargeable lithium

batteries: Li3NbO4-based system with cation-disordered rocksalt

structure. Proc. Natl. Acad. Sci. 2015, 112, 7650−7655.

(47) Assat, G.; Tarascon, J.-M. Fundamental understanding and

practical challenges of anionic redox activity in Li-ion batteries. Nat.

Energy 2018, 3, 373−386.

(48) Shannon, R. D. Revised Effective Ionic-Radii and Systematic

Studies of Interatomic Distances in Halides and Chalcogenides. Acta

Crystallogr., Sect. A 1976, 32, 751−767.

(49) Mather, G. C.; West, A. R. Continuous Order−Disorder

Transition in Li3Ni2NbO6and Cr-Doped Li3Ni2NbO6Rock Salt

Structures. J. Solid State Chem. 1996, 124, 214−219.

(50) Bonnet-Mercier, N.; Wong, R. A.; Thomas, M. L.; Dutta, A.;

Yamanaka, K.; Yogi, C.; Ohta, T.; Byon, H. R. A structured threedimensional polymer electrolyte with enlarged active reaction zone for

Li−O2 batteries. Sci. Rep. 2015, 4, 7127.

(51) Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A. Origin

of H-2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. J.

Electrochem. Soc. 2016, 163, A798−A809.

(52) Rougier, A.; Delmas, C.; Chadwick, A. V. Non-cooperative JahnTeller effect in LiNiO2: An EXAFS study. Solid State Commun. 1995,

94, 123−127.

(19) Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.-W.; Xin, H.

L.; Jaye, C.; Fischer, D. A.; Amine, K.; Yang, X.-Q. Evolution of redox

couples in Li- and Mn-rich cathode materials and mitigation of voltage

fade by reducing oxygen release. Nat. Energy 2018, 3, 690−698.

(20) Yabuuchi, N.; Kubota, K.; Aoki, Y.; Komaba, S. Understanding

Particle-Size-Dependent Electrochemical Properties of Li2MnO3Based Positive Electrode Materials for Rechargeable Lithium Batteries.

J. Phys. Chem. C 2016, 120, 875−885.

(21) Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W.; Cho, J. Countering

Voltage Decay and Capacity Fading of Lithium-Rich Cathode Material

at 60 °C by Hybrid Surface Protection Layers. Adv. Energy Mater. 2015,

5, 1500274.

(22) Zhang, S.; Gu, H.; Pan, H.; Yang, S.; Du, W.; Li, X.; Gao, M.; Liu,

Y.; Zhu, M.; Ouyang, L.; Jian, D.; Pan, F. A Novel Strategy to Suppress

Capacity and Voltage Fading of Li- and Mn-Rich Layered Oxide

Cathode Material for Lithium-Ion Batteries. Adv. Energy Mater. 2017, 7,

1601066.

(23) Croy, J. R.; Gallagher, K. G.; Balasubramanian, M.; Chen, Z.;

Ren, Y.; Kim, D.; Kang, S.-H.; Dees, D. W.; Thackeray, M. M.

Examining Hysteresis in Composite xLi2MnO3·(1−x)LiMO2 Cathode Structures. J. Phys. Chem. C 2013, 117, 6525−6536.

(24) Tsuchimoto, A.; Shi, X.-M.; Kawai, K.; Mortemard de Boisse, B.;

Kikkawa, J.; Asakura, D.; Okubo, M.; Yamada, A. Nonpolarizing

oxygen-redox capacity without O-O dimerization in Na2Mn3O7. Nat.

Commun. 2021, 12, 631.

(25) Kitchaev, D. A.; Vinckeviciute, J.; Van der Ven, A. Delocalized

Metal−Oxygen π-Redox Is the Origin of Anomalous Nonhysteretic

Capacity in Li-Ion and Na-Ion Cathode Materials. J. Am. Chem. Soc.

2021, 143, 1908−1916.

(26) Yabuuchi, N.; Tahara, Y.; Komaba, S.; Kitada, S.; Kajiya, Y.

Synthesis and Electrochemical Properties of Li4MoO5−NiO Binary

System as Positive Electrode Materials for Rechargeable Lithium

Batteries. Chem. Mater. 2016, 28, 416−419.

(27) Zhao, W.; Yamaguchi, K.; Sato, T.; Yabuuchi, N. Li4/3Ni1/

3Mo1/3O2 − LiNi1/2Mn1/2O2 Binary System as High Capacity

Positive Electrode Materials for Rechargeable Lithium Batteries. J.

Electrochem. Soc. 2018, 165, A1357−A1362.

(28) Hafiz, H.; Suzuki, K.; Barbiellini, B.; Tsuji, N.; Yabuuchi, N.;

Yamamoto, K.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H.;

Bansil, A.; Viswanathan, V. Tomographic reconstruction of oxygen

orbitals in lithium-rich battery materials. Nature 2021, 594, 213−216.

(29) Lee, J.; Papp, J. K.; Clément, R. J.; Sallis, S.; Kwon, D.-H.; Shi, T.;

Yang, W.; McCloskey, B. D.; Ceder, G. Mitigating oxygen loss to

improve the cycling performance of high capacity cation-disordered

cathode materials. Nat. Commun. 2017, 8, 981.

(30) House, R. A.; Jin, L.; Maitra, U.; Tsuruta, K.; Somerville, J. W.;

Förstermann, D. P.; Massel, F.; Duda, L.; Roberts, M. R.; Bruce, P. G.

Lithium manganese oxyfluoride as a new cathode material exhibiting

oxygen redox. Energy Environ. Sci. 2018, 11, 926−932.

(31) Lee, J.; Kitchaev, D. A.; Kwon, D.-H.; Lee, C.-W.; Papp, J. K.; Liu,

Y.-S.; Lun, Z.; Clément, R. J.; Shi, T.; McCloskey, B. D.; Guo, J.;

Balasubramanian, M.; Ceder, G. Reversible Mn2+/Mn4+ double redox

in lithium-excess cathode materials. Nature 2018, 556, 185−190.

(32) Jacquet, Q.; Iadecola, A.; Saubanère, M.; Li, H.; Berg, E. J.;

Rousse, G.; Cabana, J.; Doublet, M.-L.; Tarascon, J.-M. Charge

Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock

Salt Cathodes for Li-Ion Batteries. J. Am. Chem. Soc. 2019, 141, 11452−

11464.

(33) Campéon, B. D. L.; Yabuuchi, N. Fundamentals of metal oxide/

oxyfluoride electrodes for Li-/Na-ion batteries. Chem. Phys. Rev. 2021,

2, 041306.

(34) Sharpe, R.; House, R. A.; Clarke, M. J.; Förstermann, D.; Marie,

J.-J.; Cibin, G.; Zhou, K.-J.; Playford, H. Y.; Bruce, P. G.; Islam, M. S.

Redox Chemistry and the Role of Trapped Molecular O2 in Li-Rich

Disordered Rocksalt Oxyfluoride Cathodes. J. Am. Chem. Soc. 2020,

142, 21799−21809.

(35) Lun, Z.; Ouyang, B.; Kitchaev, D. A.; Clément, R. J.; Papp, J. K.;

Balasubramanian, M.; Tian, Y.; Lei, T.; Shi, T.; McCloskey, B. D.; Lee,

J.; Ceder, G. Improved Cycling Performance of Li-Excess Cation792

https://doi.org/10.1021/acscentsci.2c00238

ACS Cent. Sci. 2022, 8, 775−794

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

ACS Central Science

http://pubs.acs.org/journal/acscii

Research Article

switching via tuning the strong electron correlation. Sci. Rep. 2012, 2,

442.

(70) Kuneš, J.; Anisimov, V. I.; Skornyakov, S. L.; Lukoyanov, A. V.;

Vollhardt, D. NiO: Correlated Band Structure of a Charge-Transfer

Insulator. Phys. Rev. Lett. 2007, 99, 156404.

(71) Glazier, S. L.; Li, J.; Zhou, J.; Bond, T.; Dahn, J. R.

Characterization of Disordered Li(1+x)Ti2xFe(1−3x)O2 as Positive

Electrode Materials in Li-Ion Batteries Using Percolation Theory.

Chem. Mater. 2015, 27, 7751−7756.

(72) Yabuuchi, N. Material Design Concept of Lithium-Excess

Electrode Materials with Rocksalt-Related Structures for Rechargeable

Non-Aqueous Batteries. Chem. Rec 2019, 19, 690−707.

(73) Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking

the Potential of Cation-Disordered Oxides for Rechargeable Lithium

Batteries. Science 2014, 343, 519−522.

(74) Sato, T.; Sato, K.; Zhao, W.; Kajiya, Y.; Yabuuchi, N. Metastable

and nanosize cation-disordered rocksalt-type oxides: revisit of

stoichiometric LiMnO2 and NaMnO2. J. Mater. Chem. A 2018, 6,

13943−13951.

(75) Kobayashi, Y.; Sawamura, M.; Kondo, S.; Harada, M.; Noda, Y.;

Nakayama, M.; Kobayakawa, S.; Zhao, W.; Nakao, A.; Yasui, A.;

Rajendra, H. B.; Yamanaka, K.; Ohta, T.; Yabuuchi, N. Activation and

stabilization mechanisms of anionic redox for Li storage applications:

Joint experimental and theoretical study on Li2TiO3−LiMnO2 binary

system. Mater. Today 2020, 37, 43−55.

(76) Sawamura, M.; Kobayakawa, S.; Kikkawa, J.; Sharma, N.;

Goonetilleke, D.; Rawal, A.; Shimada, N.; Yamamoto, K.; Yamamoto,

R.; Zhou, Y.; Uchimoto, Y.; Nakanishi, K.; Mitsuhara, K.; Ohara, K.;

Park, J.; Byon, H. R.; Koga, H.; Okoshi, M.; Ohta, T.; Yabuuchi, N.

Nanostructured LiMnO2 with Li3PO4 Integrated at the Atomic Scale

for High-Energy Electrode Materials with Reversible Anionic Redox.

ACS Cent. Sci. 2020, 6, 2326−2338.

(77) Izumi, F.; Momma, K. Three-Dimensional Visualization in

Powder Diffraction. Solid State Phenomena 2007, 130, 15−20.

(78) Momma, K.; Izumi, F. VESTA 3 for three-dimensional

visualization of crystal, volumetric and morphology data. J. Appl.

Crystallogr. 2011, 44, 1272−1276.

(79) Yonemura, M.; Mori, K.; Kamiyama, T.; Fukunaga, T.; Torii, S.;

Nagao, M.; Ishikawa, Y.; Onodera, Y.; Adipranoto, D. S.; Arai, H.;

Uchimoto, Y.; Ogumi, Z. Development of SPICA, New Dedicated

Neutron Powder Diffractometer for Battery Studies. J. Phys. Conf. Ser.

2014, 502, 012053.

(80) Oishi, R.; Yonemura, M.; Nishimaki, Y.; Torii, S.; Hoshikawa, A.;

Ishigaki, T.; Morishima, T.; Mori, K.; Kamiyama, T. Rietveld analysis

software for J-PARC. Nucl.l Instrum. Methods Phys. Res. A 2009, 600,

94−96.

(81) Oishi-Tomiyasu, R.; Yonemura, M.; Morishima, T.; Hoshikawa,

A.; Torii, S.; Ishigaki, T.; Kamiyama, T. Application of Matrix

Decomposition Algorithms for Singular Matrices to The Pawley

Method in Z-Rietveld. J. Appl. Crystallogr. 2012, 45, 299−308.

(82) Wallwork, K. S.; Kennedy, B. J.; Wang, D. The high resolution

powder diffraction beamline for the Australian Synchrotron. Synchrotron Radiation Instrumentation, Pts 1 and 2 2006, 879, 879−882.

(83) Rodriguez-Carvajal, J. Recent Advances in Magnetic-Structure

Determination by Neutron Powder Diffraction. Physica B Condens.

Matter 1993, 192, 55−69.

(84) Hohenberg, P.; Kohn, W. The Inhomogeneous Electron Gas.

Phys. Rev. 1964, 136, B864.

(85) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio

total-energy calculations using a plane-wave basis set. Physical Review B Condensed Matter and Materials Physics 1996, 54, 11169−11186.

(86) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy

calculations for metals and semiconductors using a plane-wave basis set.

Comput. Mater. Sci. 1996, 6, 15−50.

(87) Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient

Approximation Made Simple. Physical review letters 1996, 77, 3865−

3868.

(53) Ito, A.; Sato, Y.; Sanada, T.; Hatano, M.; Horie, H.; Ohsawa, Y. In

situ X-ray absorption spectroscopic study of Li-rich layered cathode

material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 2011, 196,

6828−6834.

(54) Matsuhara, T.; Tsuchiya, Y.; Yamanaka, K.; Mitsuhara, K.; Ohta,

T.; Yabuuchi, N. Synthesis and Electrode Performance of Li4MoO5LiFeO2 Binary System as Positive Electrode Materials for Rechargeable

Lithium Batteries. Electrochemistry 2016, 84, 797−801.

(55) Yabuuchi, N.; Nakayama, M.; Takeuchi, M.; Komaba, S.;

Hashimoto, Y.; Mukai, T.; Shiiba, H.; Sato, K.; Kobayashi, Y.; Nakao,

A.; Yonemura, M.; Yamanaka, K.; Mitsuhara, K.; Ohta, T. Origin of

Stabilization and Destabilization in Solid-State Redox Reaction of

Oxide Ions for Lithium-Ion Batteries. Nat. Commun. 2016, 7, 13814.

(56) Hu, N.; Tang, Z.; Shen, P. K. Hierarchical NiO nanobelt film

array as an anode for lithium-ion batteries with enhanced electrochemical performance. RSC Adv. 2018, 8, 26589−26595.

(57) Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.;

Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J.-G.; Browning, N. D.;

Liu, J.; Wang, C. Formation of the Spinel Phase in the Layered

Composite Cathode Used in Li-Ion Batteries. ACS Nano 2013, 7, 760−

767.

(58) Yoon, W.-S.; Chung, K. Y.; McBreen, J.; Fischer, D. A.; Yang, X.Q. Changes in electronic structure of the electrochemically Li-ion

deintercalated LiNiO2 system investigated by soft X-ray absorption

spectroscopy. J. Power Sources 2006, 163, 234−237.

(59) Yoon, W.-S.; Balasubramanian, M.; Chung, K. Y.; Yang, X.-Q.;

McBreen, J.; Grey, C. P.; Fischer, D. A. Investigation of the Charge

Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy. J. Am. Chem.

Soc. 2005, 127, 17479−17487.

(60) Abbate, M.; De Groot, F. M. F.; Fuggle, J. C.; Fujimori, A.;

Strebel, O.; Lopez, M. F.; Domke, M.; Kaindl, G.; Sawatzky, G. A.;

Takano, M.; Takeda, Y.; Eisaki, H.; Uchida, S. Controlled-valence

properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray

absorption spectroscopy. Phys. Rev. B 1992, 46, 4511−4519.

(61) Zhang, K. H. L.; Du, Y.; Sushko, P. V.; Bowden, M. E.;

Shutthanandan, V.; Sallis, S.; Piper, L. F. J.; Chambers, S. A. Holeinduced insulator-to-metal transition in La1-xSrxCrO3 epitaxial films.

Phys. Rev. B 2015, 91, 155129.

(62) Reed, J.; Ceder, G. Role of Electronic Structure in the

Susceptibility of Metastable Transition-Metal Oxide Structures to

Transformation. Chem. Rev. 2004, 104, 4513−4534.

(63) Nakayama, M.; Nishii, K.; Watanabe, K.; Tanibata, N.; Takeda,

H.; Itoh, T.; Asaka, T. First-principles study of the morphology and

surface structure of LaCoO3 and La0.5Sr0.5Fe0.5Co0.5O3 perovskites

as air electrodes for solid oxide fuel cells. Science and Technology of

Advanced Materials: Methods 2021, 1, 24−33.

(64) Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.;

Persson, K. A.; Ceder, G. Formation enthalpies by mixing GGA and

GGA + U calculations. Phys. Rev. B 2011, 84, 045115.

(65) Hautier, G.; Ong, S. P.; Jain, A.; Moore, C. J.; Ceder, G. Accuracy

of density functional theory in predicting formation energies of ternary

oxides from binary oxides and its implication on phase stability. Phys.

Rev. B 2012, 85, 155208.

(66) Zhou, F.; Marianetti, C. A.; Cococcioni, M.; Morgan, D.; Ceder,

G. Phase separation in ${\mathrm{Li}}_{x}{\mathrm{FePO}}_{4}$

induced by correlation effects. Phys. Rev. B 2004, 69, 201101.

(67) Chevrier, V. L.; Ong, S. P.; Armiento, R.; Chan, M. K. Y.; Ceder,

G. Hybrid density functional calculations of redox potentials and

formation energies of transition metal compounds. Phys. Rev. B 2010,

82, 075122.

(68) Sato, K.; Nakayama, M.; Glushenkov, A. M.; Mukai, T.;

Hashimoto, Y.; Yamanaka, K.; Yoshimura, M.; Ohta, T.; Yabuuchi, N.

Na-Excess Cation-Disordered Rocksalt Oxide: Na1.3Nb0.3Mn0.4O2.

Chem. Mater. 2017, 29, 5043−5047.

(69) Peng, H. Y.; Li, Y. F.; Lin, W. N.; Wang, Y. Z.; Gao, X. Y.; Wu, T.

Deterministic conversion between memory and threshold resistive

793

https://doi.org/10.1021/acscentsci.2c00238

ACS Cent. Sci. 2022, 8, 775−794

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

ACS Central Science

http://pubs.acs.org/journal/acscii

Research Article

(88) Mattsson, A. E.; Armiento, R.; Mattsson, T. R. Comment on

“Restoring the Density-Gradient Expansion for Exchange in Solids and

Surfaces”. Phys. Rev. Lett. 2008, 101, 239701.

(89) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B

1994, 50, 17953−17979.

(90) Hautier, G.; Ong, S. P.; Jain, A.; Moore, C. J.; Ceder, G. Accuracy

of density functional theory in predicting formation energies of ternary

oxides from binary oxides and its implication on phase stability. Physical

Review B - Condensed Matter and Materials Physics 2012, 85, 155208.

(91) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based

on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207−

8215.

(92) Da Silva, J. L. F.; Ganduglia-Pirovano, M. V.; Sauer, J.; Bayer, V.;

Kresse, G. Hybrid functionals applied to rare-earth oxides: The example

of ceria. Phys. Rev. B 2007, 75, 045121.

(93) Da Silva, J. L. F.; Ganduglia-Pirovano, M. V.; Sauer, J.; Bayer, V.;

Kresse, G. Hybrid functionals applied to rare-earth oxides: The example

of ceria. Physical Review B - Condensed Matter and Materials Physics

2007, 75, 045121.

Recommended by ACS

Accelerated Screening of High-Energy Lithium-Ion

Battery Cathodes

Karlie P. Potts, Eric McCalla, et al.

DECEMBER 06, 2019

ACS APPLIED ENERGY MATERIALS

READ

Interplay between Cation and Anion Redox in Ni-Based

Disordered Rocksalt Cathodes

Yuan Yue, Wei Tong, et al.

AUGUST 04, 2021

ACS NANO

READ

Mixed Cationic and Anionic Redox in Ni and Co Free

Chalcogen-Based Cathode Chemistry for Li-Ion

Batteries

Sudhan Nagarajan, Leela Mohana Reddy Arava, et al.

SEPTEMBER 15, 2021

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ

Structural Insights into the Lithium Ion Storage

Behaviors of Niobium Tungsten Double Oxides

Wentao Yao, Cheng Yang, et al.

DECEMBER 22, 2021

CHEMISTRY OF MATERIALS

READ

Get More Suggestions >

794

https://doi.org/10.1021/acscentsci.2c00238

ACS Cent. Sci. 2022, 8, 775−794

...

参考文献をもっと見る