リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stability of vacancies in β-type Ti-15Mo-5Zr-3Al alloy fabricated via laser powder bed fusion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stability of vacancies in β-type Ti-15Mo-5Zr-3Al alloy fabricated via laser powder bed fusion

Mizuno, Masataka 大阪大学

2023.12.01

概要

𝛽-type titanium alloys have attracted considerable attention as
biomedical implant materials [1–4]. 𝛽-type Ti-15Mo-5Zr-3Al (wt%) is
one of the most promising candidates for biomedical implant materials because of its low Young’s modulus [5–7]. The control and stability
of crystallographic texture of 𝛽-type Ti-15Mo-5Zr-3Al alloys, fabricated
via laser powder bed fusion (LPBF) technologies, have been investigated
[8–11]. The existence of quenched-in vacancies can be expected in LPBFmanufactured 𝛽-type Ti-15Mo-5Zr-3Al because of the fast cooling rate
in the additive manufacturing process [12]. The cooling rate in LPBF
process has been estimated to be 105 –107 K/s [13,14]. However, the
anomalous fast diffusion, originating from the body-centered cubic (bcc)
structure in the group-IVb 𝛽 phase [15], could promote the annihilation
of quenched-in vacancies. It has been reported that in 𝛽-type Ti, the elementary diffusion jump is a jump into a nearest-neighbor vacancy [16].
Therefore, the stability of these vacancies plays a key role in the diffusivity of 𝛽-type Ti. The bcc structure of 𝛽-type titanium alloys is stabilized
by 𝛽-stabilizing elements [3] into them. ...

この論文で使われている画像

参考文献

[1] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater. 8 (2012) 3888–3903,

doi:10.1016/j.actbio.2012.06.037.

[2] L.Y. Chen, Y.W. Cui, L.C. Zhang, Recent development in beta titanium alloys for

biomedical applications, Metals 10 (2020) 1139, doi:10.3390/met10091139.

[3] S.S. Sidhu, H. Singh, M.A.H. Gepreel, A review on alloy design, biological response,

and strengthening of 𝛽-titanium alloys as biomaterials, Mater. Sci. Eng. C 121 (2021)

111661, doi:10.1016/j.msec.2020.111661.

[4] T. Nakano, K. Hagihara, Additive manufacturing of medical devices, in:

ASM Handbook, Vol. 23A–Additive Manufacturing in Biomedical Applications, ASM International, Materials Park, OH, 2022, pp. 416–433,

doi:10.31399/asm.hb.v23A.a0006905.

[5] P.R. Boyer, G. Welsh, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, OH, 1994.

[6] S.H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima, T. Nakano, Biocompatible

low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti–

15Mo–5Zr–3Al alloy single crystal, J. Mech. Behav. Biomed. Mater. 14 (2012) 48–54,

doi:10.1016/j.jmbbm.2012.05.005.

[7] M. Tane, K. Hagihara, M. Ueda, T. Nakano, Y. Okuda, Elastic-modulus enhancement

during room-temperature aging and its suppression in metastable Ti–Nb-based alloys with low body-centered cubic phase stability, Acta Mater. 102 (2016) 373–384,

doi:10.1016/j.actamat.2015.09.030.

[8] K. Hagihara, T. Nakano, Control of anisotropic crystallographic texture in powder bed fusion additive manufacturing of metals and ceramics—A review, JOM 74

(2022) 1760–1773, doi:10.1007/s11837-021-04966-7.

[9] T. Ishimoto, K. Hagihara, K. Hisamoto, S-H. Sun, T. Nakano, Crystallographic texture

control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the devel-

Fig. 11. Energy profiles for migration of the Ti atom to a neighboring vacancy

exhibiting the vacancy formation energy close to the average value of 1.01 eV

in Ti-15Mo-5Zr-3Al.

Declaration of Competing Interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence

the work reported in this paper.

CRediT authorship contribution statement

Masataka Mizuno: Conceptualization, Methodology, Investigation,

Writing – original draft, Writing – review & editing. Kazuki Sugita:

Investigation, Writing – review & editing. Kousuke Do: Investigation, Data curation, Visualization. Takuya Ishimoto: Methodology,

Validation, Investigation, Data curation, Writing – review & editing.

M. Mizuno, K. Sugita, K. Do et al.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Additive Manufacturing Letters 7 (2023) 100162

opment of novel implants with a biocompatible low Young’s modulus, Scr. Mater.

132 (2017) 34–38, doi:10.1016/j.scriptamat.2016.12.038.

T. Ishimoto, K. Hagihara, K. Hisamoto, T. Nakano, Stability of crystallographic

texture in laser powder bed fusion: Understanding the competition of crystal growth using a single crystalline seed, Addit. Manuf. 43 (2021) 102004,

doi:10.1016/j.addma.2021.102004.

S.H. Sun, K. Hagihara, T. Ishimoto, R. Suganuma, Y.F. Xue, T. Nakano, Comparison

of microstructure, crystallographic texture, and mechanical properties in Ti–15Mo–

5Zr–3Al alloys fabricated via electron and laser beam powder bed fusion technologies, Addit. Manuf. 47 (2021) 102329, doi:10.1016/j.addma.2021.102329.

D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals,

Acta Mater. 117 (2016) 371–392, doi:10.1016/j.actamat.2016.07.019.

Q. Jia, P. Rometsch, P. Kürnsteiner, Q. Chao, A. Huang, M. Weyland, L. Bourgeois, X. Wu, Selective laser melting of a high strength: Al–Mn–Sc alloy: alloy design and strengthening mechanisms, Acta Mater. 171 (2019) 108–118,

doi:10.1016/j.actamat.2019.04.014.

D. Gu, Q. Shi, K. Lin, L. Xi, Microstructure and performance evolution and underlying

thermal mechanisms of Ni-based parts fabricated by selective laser melting, Addit.

Manuf. 22 (2018) 265–278, doi:10.1016/j.addma.2018.05.019.

C. Herzig, U. Kohler, Anomalous self-diffusion in BCC IVB metals and alloys, Mater.

Sci. Forum 15-18 (1987) 301–322, doi:10.4028/www.scientific.net/MSF.15-18.301.

G. Vogl, W. Petry, Th. Flottmann, A. Heiming, Direct determination of the selfdiffusion mechanism in BCC 𝛽-titanium, Phys. Rev. B 39 (1989) 5025–5034,

doi:10.1103/physrevb.39.5025.

R. Sahara, S. Emura, S. Ii, S. Ueda, K. Tsuchiya, First-principles study of electronic structures and stability of body-centered cubic Ti–Mo alloys by special quasirandom structures, Sci. Technol. Adv. Mater. 15 (2014) 035014,

doi:10.1088/1468-6996/15/3/035014.

S. Barzilai, C. Toher, S. Curtarolo, O. Levy, Molybdenum-titanium phase diagram evaluated from ab initio calculations, Phys. Rev. Mater. 1 (2017) 023604,

doi:10.1103/PhysRevMaterials.1.023604.

P. Cao, F. Tian, Y. Wang, Effect of Mo on the phase stability and elastic mechanical

properties of Ti–Mo random alloys from ab initio calculations, J. Phys. Condens.

Matter 29 (2017) 435703, doi:10.1088/1361-648X/aa87d3.

J.L. Zhu, S. Cao, Y. Wang, R. Yang, Q.Mi. Hu, First-principles investigations of 𝜔

variant selection during a thermal 𝛽 → 𝜔 transformation of binary Ti-xMo alloy,

Comput. Mater. Sci. 155 (2018) 524–533, doi:10.1016/j.commatsci.2018.09.028.

F. Jiang, C. Pang, Z. Zheng, Q. Wang, J. Zhao, C. Dong, First‑principles calculations

for stable 𝛽‑Ti–Mo alloys using cluster‑plus‑glue‑atom model, Acta Metall. Sin. 33

(2020) 968–974 (Engl. Lett.), doi:10.1007/s40195-020-01006-2.

M. Li, X. Min, Origin of 𝜔-phase formation in metastable 𝛽-type Ti-Mo

alloys: cluster structure and stacking fault, Sci. Rep. 10 (2020) 8664,

doi:10.1038/s41598-020-65254-z.

Q.M. Hu, R. Yang, Unconventional non-uniform local lattice distortion in dilute Ti-Mo solid solution, Acta Mater. 197 (2020) 91–96,

doi:10.1016/j.actamat.2020.07.033.

R. Salloom1, S.A. Mantri, R. Banerjee, S.G. Srinivasan, First principles computation of composition dependent elastic constants of omega in titanium

alloys: implications on mechanical behavior, Sci. Rep. 11 (2021) 12005,

doi:10.1038/s41598-021-91594-5.

Q.J. Chen, S.Y. Ma, S.Q. Wang, The assisting and stabilizing role played by 𝜔 phase

during the {112} <111>𝛽 twinning in Ti-Mo alloys: a first-principles insight, J.

Mater. Sci. Technol. 80 (2021) 163–170, doi:10.1016/j.jmst.2020.11.056.

L. Bellaiche, D. Vanderbilt, Virtual crystal approximation revisited: application to

dielectric and piezoelectric properties of perovskites, Phys. Rev. B 61 (2000) 7877–

7882, doi:10.1103/PhysRevB.61.7877.

N.J. Rammer, A.M. Rappe, Virtual-crystal approximation that works: Locating a

compositional phase boundary in Pb(Zr1−x Tix )O3 , Phys. Rev. B 62 (2000) R743–

R746, doi:10.1103/PhysRevB.62.R743.

P. Soven, Coherent-potential model of substitutional disordered alloys, Phys. Rev.

156 (1967) 809–813, doi:10.1103/PhysRev.156.809.

B.L. Gyorffy, Coherent-potential approximation for a nonoverlapping-muffin-tinpotential model of random substitutional alloys, Phys. Rev. B 5 (1972) 2382–2384,

doi:10.1103/PhysRevB.5.2382.

[30] S. Kadkhodaei, A. Davariashtiyan, Phonon-assisted diffusion in bcc phase of titanium and zirconium from first principles, Phys. Rev. Mater. 4 (2020) 043802,

doi:10.1103/PhysRevMaterials.4.043802.

[31] A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Special quasirandom structures,

Phys. Rev. Lett. 65 (1990) 353–356, doi:10.1103/PhysRevLett.65.353.

[32] P. Kirkegaard, M. Eldrup, O.E. Mogensen, N.J. Pedersen, Program system for

analysing positron lifetime spectra and angular correlation curves, Comput. Phys.

Commun. 23 (1981) 307–335, doi:10.1016/0010-4655(81)90006-0.

[33] P. Kirkegaard, M. Eldrup, Positronfit extended: a new version of a program for

analysing position lifetime spectra, Comput. Phys. Commun. 7 (1974) 401–409,

doi:10.1016/0010-4655(74)90070-8.

[34] X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger,

F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, Ph. Ghosez,

M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180 (2009) 2582–2615,

doi:10.1016/j.cpc.2009.07.007.

[35] E. Boroński, R.M. Nieminen, Electron-positron density-functional theory, Phys. Rev.

B 34 (1986) 3820–3831, doi:10.1103/PhysRevB.34.3820.

[36] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B

47 (1993) 558–561, doi:10.1103/PhysRevB.47.558.

[37] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186,

doi:10.1103/PhysRevB.54.11169.

[38] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868, doi:10.1103/PhysRevLett.77.3865.

[39] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953–

17979, doi:10.1103/PhysRevB.50.17953.

[40] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B 59 (1999) 1758–1775, doi:10.1103/PhysRevB.59.1758.

[41] J. Cowley, An approximate theory of order in alloys, Phys. Rev. 77 (1950) 669–675,

doi:10.1103/PhysRev.77.669.

[42] M.J. Puska, T. Korhonen, R.M. Nieminen, A.P. Seitsonen, Two-component densityfunctional calculations for positrons trapped by defects in solids, Appl. Surf. Sci. 116

(1997) 293 -229, doi:10.1016/S0169-4332(96)01072-0.

[43] A. Takase, T. Ishimoto, R. Suganuma, T. Nakano, Lattice distortion in selective laser melting (SLM)-manufactured unstable 𝛽-type Ti-15Mo-5Zr-3Al alloy analyzed by high-precision X-ray diffractometry, Scr. Mater. 201 (2021) 113953,

doi:10.1016/j.scriptamat.2021.113953.

[44] M. Mizuno, K. Sugita, H. Araki, Defect energetics for diffusion in CrMnFeCoNi highentropy alloy from first-principles calculations, Comput. Mater. Sci. 170 (2019)

109163, doi:10.1016/j.commatsci.2019.109163.

[45] H. Jónsson, G. Mills, K.W. Jacobsen, B.J. Berne, G. Ciccotti, D.F. Coker, in: Classical and Quantum Dynamics in Condensed Phase Simulations–Nudged Elastic Band

Method for Finding Minimum Energy Paths of Transitions, World Scientific, Singapore, 1998, pp. 385–404, doi:10.1142/9789812839664_0016.

[46] G. Mills, H. Jonsson, G.K. Schenter, Reversible work transition state theory: application to dissociative adsorption of hydrogen, Surf. Sci. 324 (1995) 305–337,

doi:10.1016/0039-6028(94)00731-4.

[47] T.S. Byun, B.E. Garrison, M.R. McAlister, X. Chen, M.N. Gussev, T.G. Lach,

A.Le Coq, K. Linton, C.B. Joslin, J.K. Carver, F.A. List, R.R. Dehoff, K.A. Terrani, Mechanical behavior of additively manufactured and wrought 316L stainless

steels before and after neutron irradiation, J. Nucl. Mater. 548 (2021) 152849,

doi:10.1016/j.jnucmat.2021.152849.

[48] X. Hu, T.G. Lach, K.A. Terrani, Deuterium permeation and retention in 316L stainless

steel manufactured by laser powder bed fusion, J. Nucl. Mater. 548 (2021) 152871,

doi:10.1016/j.jnucmat.2021.152871.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る