リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Improving the tensile properties of additively manufactured β-containing tial alloys via microstructure control focusing on cellular precipitation reaction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Improving the tensile properties of additively manufactured β-containing tial alloys via microstructure control focusing on cellular precipitation reaction

Cho, Ken 大阪大学

2021.07.12

概要

The effect of a two-step heat treatment on the microstructure and high-temperature tensile properties of β-containing Ti-44Al-4Cr (at%) alloys fabricated by electron beam powder bed fusion were examined by focusing on the morphology of α2/γ lamellar grains and β/γ cells precipitated at the lamellar grain boundaries by a cellular precipitation reaction. The alloys subjected to the first heat treatment step at 1573 K in the α + β two-phase region exhibit a non-equilibrium microstructure consisting of the α2/γ lamellar grains with a fine lamellar spacing and a β/γ duplex structure located at the grain boundaries. In the second step of heat treatment, i.e., aging at 1273 K in the β + γ two-phase region, the β/γ cells are discontinuously precipitated from the lamellar grain boundaries due to excess Cr supersaturation in the lamellae. The volume fraction of the cells and lamellar spacing increase with increasing aging time and affect the tensile properties of the alloys. The aged alloys exhibit higher strength and comparable elongation at 1023 K when compared to the as-built alloys. The strength of these alloys is strongly dependent on the volume fraction and lamellar spacing of the α2/γ lamellae. In addition, the morphology of the β/γ cells is also an important factor controlling the fracture mode and ductility of these alloys.

参考文献

1. Kim, Y.W. Ordered intermetallic alloys, part III: Gamma titanium aluminides. JOM 1994, 46, 30–39. [CrossRef]

2. Bartolotta, P.; Barrett, J.; Kelly, T.; Smashey, R. The use of cast Ti−48Al−2Cr−2Nb in jet engines. JOM 1997, 49, 48–50. [CrossRef]

3. Aguilar, J.; Schievenbusch, A.; Kättlitz, O. Investment casting technology for production of TiAl low pressure turbine blades— Process engineering and parameter analysis. Intermetallics 2011, 19, 757–761. [CrossRef]

4. Bewlay, B.P.; Nag, S.; Suzuki, A.; Weimer, M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016, 33, 549–559. [CrossRef]

5. Takeyama, M.; Kobayashi, S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations. Intermetallics 2005, 3, 993–999. [CrossRef]

6. Tetsui, T.; Shindo, K.; Kobayashi, S.; Takeyama, M. A newly developed hot worked TiAl alloy for blades and structural components. Scripta Mater. 2002, 47, 399–403. [CrossRef]

7. Clemens, H.; Wallgram, W.; Kremmer, S.; Güther, V.; Otto, A.; Bartels, A. Design of novel β-solidifying TiAl alloys with adjustableβ/B2-phase fraction and excellent hot-workability. Adv. Eng. Mater. 2008, 10, 707–713. [CrossRef]

8. Bernal, D.; Chamorro, X.; Hurtado, I.; Madariaga, I. Evolution of lamellar microstructures in a cast TNM alloy modified with boron through single-step heat treatments. Intermetallics 2020, 124, 106842. [CrossRef]

9. Kastenhuber, M.; Rashkova, B.; Clemens, H.; Mayer, S. Enhancement of creep properties and microstructural stability of intermetallic β-solidifying γ-TiAl based alloys. Intermetallics 2015, 63, 19–26. [CrossRef]

10. Voisin, T.; Monchoux, J.-P.; Hantcherli, M.; Mayer, S.; Clemens, H.; Couret, A. Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Mater. 2014, 73, 107–115. [CrossRef]

11. Hadi, M.; Shafyei, A.; Meratian, M. A comparative study of microstructure and high temperature mechanical properties of a β-stabilized TiAl alloy modified by lanthanum and erbium. Mater. Sci. Eng. A 2015, 624, 1–8. [CrossRef]

12. Jovanovic´, M.T.; Dimcˇic´, B.; Bobic´, I.; Zec, A.; Maksimovic´, V. Microstructure and mechanical properties of precision cast TiAl turbocharger wheel. J. Mater. Process. Technol. 2005, 167, 14–21. [CrossRef]

13. Yamaguchi, M. High temperature intermetallics—With particular emphasis on TiAl. Mater. Sci. Technol. 1992, 8, 299–307. [CrossRef]

14. Renjie, C.; Ming, G.; Hu, Z.; Shengkai, G. Interactions between TiAl alloys and yttria refractory material in casting process. J. Mater. Process. Technol. 2010, 210, 1190–1196. [CrossRef]

15. Nakano, T.; Fujitani, W.; Ishimoto, T.; Lee, J.W.; Ikeo, N.; Fukuda, H.; Kuramoto, K. Formation of new bone with preferentially oriented biological apatite crystals using a novel cylindrical implant containing anisotropic open pores fabricated by the electron beam melting (EBM) method. ISIJ Int. 2011, 51, 262–268. [CrossRef]

16. Ikeo, N.; Ishimoto, T.; Nakano, T. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications. J. Alloys Compd. 2015, 639, 336–340. [CrossRef]

17. Harun, W.S.W.; Kamariah, M.S.I.N.; Muhamad, N.; Ghani, S.A.C.; Ahmad, F.; Mohamed, Z. A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol. 2018, 327, 128–151. [CrossRef]

18. Ishimoto, T.; Ozasa, R.; Nakano, K.; Weinmann, M.; Schnitter, C.; Stenzel, M.; Matsugaki, A.; Nagase, T.; Matsuzaka, T.; Todai, M. Development of TiNbTaZrMo bio–high entropy alloy (BioHEA) super–solid solution by selective laser melting, and its improved mechanical property and biocompatibility. Scr. Mater. 2021, 194, 113658. [CrossRef]

19. Wang, P.; Huang, P.; Ng, F.L.; Sin, A.J.; Lu, S.; Nai, M.L.S.; Dong, Z.L.; Wei, L. Additively manufactured CoCrFeNiMn high-entropy alloy viapre-alloyed powder. Mater. Des. 2019, 168, 107576. [CrossRef]

20. Zhai, W.; Wang, P.; Ng, F.L.; Zhou, W.; Nai, S.L.M.; Wei, J. Hybrid manufacturing of γ-TiAl and Ti–6Al–4V bimetal component with enhanced strength using electron beam melting. Compos. B. Eng. 2021, 207, 108587. [CrossRef]

21. Wartbichler, R.; Clemens, H.; Mayer, S. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy. Adv. Eng. Mater. 2019, 21, 1900800. [CrossRef]

22. Hagihara, K.; Nakano, T.; Suzuki, M.; Ishimoto, T.; Sun, S.H. Successful additive manufacturing of MoSi2 including crystallo- graphic texture and shape control. J. Alloy Compd. 2017, 696, 67–72. [CrossRef]

23. Gokcekaya, O.; Hayashi, N.; Ishimoto, T.; Ueda, K.; Narushima, T.; Nakano, T. Crystallographic orientation control of pure chromium via laser powder-bed fusion and improved high temperature oxidation resistance. Addit. Manuf. 2020, 36, 101624.

24. Ishimoto, T.; Wu, S.; Ito, Y.; Sun, S.H.; Amano, H.; Nakano, T. Crystallographic orientation control of 316L austenitic stainless steel via selective laser melting. ISIJ Int. 2020, 60, 1758–1764. [CrossRef]

25. Ishimoto, T.; Hagihara, K.; Hisamoto, K.; Nakano, T. Stability of crystallographic texture in laser powder bed fusion: Understand- ing the competition of crystal growth using a single crystalline seed. Addit. Manuf. 2021, 43, 102004.

26. Gokcekaya, O.; Ishimoto, T.; Hibino, S.; Yasutomi, J.; Narushima, T.; Nakano, T. Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy. Acta Mater. 2021, 212, 116876. [CrossRef]

27. Kan, W.; Chen, B.; Peng, H.; Liang, Y.; Lin, J. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting. J. Alloys Compd. 2019, 809, 151673. [CrossRef]

28. Karimia, P.; Sadeghi, E.; Ålgårdha, J.; Andersson, J. EBM-manufactured single tracks of Alloy 718: Influence of energy input and focus offset on geometrical and microstructural characteristics. Mater. Charact. 2019, 148, 88–99. [CrossRef]

29. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]

30. Wang, P.; Todai, M.; Nakano, T. Beta titanium single crystal with bone-like elastic modulus and large crystallographic elastic anisotropy. J. Alloys Compd. 2018, 782, 1–17. [CrossRef]

31. Nakano, T.; Ishimoto, T. Powder-based Additive Manufacturing for Development of Tailor-made Implants for Orthopedic Applications. KONA 2015, 32, 75–84. [CrossRef]

32. Lee, S.-H.; Todai, M.; Tane, M.; Hagihara, K.; Nakajima, H.; Nakano, T. Biocompatible Low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal. J. Mech. Behav. Biomed. Mater. 2012, 14, 48–54. [CrossRef]

33. Todai, M.; Nakano, T.; Liu, T.; Yasuda, H.Y.; Hagihara, K.; Cho, K.; Ueda, M.; Takeyama, M. Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting. Addit. Manuf. 2017, 13, 61–70. [CrossRef]

34. Cho, K.; Kawabata, H.; Hayashi, T.; Yasuda, H.Y.; Nakashima, H.; Takeyama, M.; Nakano, T. Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting. Addit. Manuf. 2021, 46, 102091.

35. Cho, K.; Kobayashi, R.; Oh, J.Y.; Yasuda, H.Y.; Todai, M.; Nakano, T.; Ikeda, A.; Ueda, M.; Takeyama, M. Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting. Intermetallics 2018, 95, 1–10. [CrossRef]

36. Cho, K.; Kobayashi, R.; Fukuoka, T.; Oh, J.Y.; Yasuda, H.Y.; Todai, M.; Nakano, T.; Ikeda, A.; Ueda, M.; Takeyama, M. Microstruc- ture and Fatigue Properties of TiAl with Unique Layered Microstructure Fabricated by Electron Beam Melting. Mater. Sci. Forum. 2018, 941, 1597–1602. [CrossRef]

37. Sakata, M.; Oh, J.Y.; Cho, K.; Yasuda, H.Y.; Todai, M.; Nakano, T.; Ikeda, A.; Ueda, M.; Takeyama, M. Effects of heat treatment on unique layered microstructure and tensile properties of TiAl fabricated by electron beam melting. Mater. Sci. Forum. 2018, 941, 1366–1371. [CrossRef]

38. Shaaban, A.; Wakabayashi, H.; Nakashima, H.; Takeyama, M. Phase equilibria among β/α/α2/γ phases and phase transforma- tions in Ti-Al-Cr system at elevated temperatures. Process. Manuf. 2019, 4, 1471–1476. [CrossRef]

39. Seifi, M.; Salem, A.A.; Satko, D.P.; Ackelid, U.; Semiatin, S.L.; Lewandowski, J.J. Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb. J. Alloys Compd. 2017, 729, 1118–1135. [CrossRef]

40. Umakoshi, Y.; Nakano, T. The role of ordered domains and slip mode of α2 phase in the plastic behaviour of TiAl crystals containing oriented lamellae. Acta Metall. Mater. 1993, 41, 1155–1161. [CrossRef]

41. Maruyama, K.; Yamada, N.; Sato, H. Effects of lamellar spacing on mechanical properties of fully lamellar Ti–39.4mol% Al alloy.Mater. Sci. Eng. A 2001, 319–321, 360–363. [CrossRef]

42. Signori, L.J.; Nakamura, T.; Okada, Y.; Yamagata, R.; Nakashima, H.; Takeyama, M. Fatigue crack growth behavior of wrought γ-based TiAl alloy containing β-phase. Intermetallics 2018, 100, 77–87. [CrossRef]

43. Han, L.; Dong, J.; Zhang, S.; Zhang, C.; Xiao, S.; Chen, Y. Microstructure evolution and tensile properties of conventional cast TiAl based alloy with trace Ni addition. Mater. Sci. Eng. A 2018, 715, 41–48. [CrossRef]

44. Schwaighofer, E.; Clemens, H.; Mayer, S.; Lindemann, J.; Klose, J.; Smarsly, A.; Güther, V. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics 2014, 44, 128–140. [CrossRef]

45. Cao, G.; Fu, L.; Lin, J.; Zhang, Y.; Chen, C. The relationships of microstructure and properties of a fully lamellar TiAl alloy.Intermetallics 2000, 8, 647–653. [CrossRef]

46. Aaronson, H.I.; Liu, Y.C. On the turnbull and the Cahn theories of the cellular reaction. Scr. Mater. 1968, 2, 1–8. [CrossRef]

47. Li, M.; Xiao, S.; Chen, Y.; Xu, L.; Tian, J. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys. J. Alloys Compd. 2019, 775, 441–448. [CrossRef]

48. Nakano, T.; Biermann, H.; Riemer, M.; Mughrabi, H.; Nakai, Y.; Umakoshi, Y. Classification of γ-γ and γ-α2 lamellar boundaries on the basis of continuity of strains and slip-twinning planes in fatigued TiAl polysynthetically twinned crystals. Philos. Mag. A 2001, 81, 1447–1471. [CrossRef]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る