リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Ti–Zr–Hf–Y–La high-entropy alloys with dual hexagonal-close-packed structure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Ti–Zr–Hf–Y–La high-entropy alloys with dual hexagonal-close-packed structure

Nagase, Takeshi 大阪大学

2020.09.01

概要

TiZrHfYLa0.2 high-entropy alloys (HEAs) with dual hexagonal-closed-packed (HCP) structures were designed based on the concept of liquid phase separation (LPS) and segregation for enhancing the immiscibility of the constituent elements. The LPS leads to a particular solidification microstructure on the free surface side and Cu-hearth contacted area in the ingots. The dual HCP structures with equi-axis Ti–Zr–Hf dendrite and Y-La-rich interdendrite were observed at most regions of the arc-melted ingots. The mixing enthalpy among the constituent elements and predicted phase diagrams constructed by the Materials Project were effective for the alloy design of the HEAs with dual HCP structures.

この論文で使われている画像

参考文献

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213–218 https://doi.org/10.1016/j.msea.2003.10.257.

[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299–303 https://doi.org/10.1002/adem.200300567.

[3] S. Ranganathan, Curr. Sci. 85 (2003) 1404–1406 https://www.currentscience.ac. in/Downloads/article_id_085_10_1404_1406_0.pdf.

[4] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liew, Adv. Eng. Mater. 10 (2008) 534–538 https://doi.org/10.1002/adem.200700240.

[5] J.W. Yeh, JOM 65 (2013) 1759–1771 https://doi.org/10.1007/s11837-013-0761-6.

[6] M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 (2014) 107–123 https://doi.org/10.1080/ 21663831.2014.912690.

[7] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61 (2014) 1–93 https://doi.org/10.1016/j.pmatsci.2013.10.001.

[8] B.S. Murty, J.-.W. Yeh, S. Ranganathan, High-Entropy Alloys, 1st ed., Elsevier, 2014.

[9] M.C. Gao, J.-.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys, Fundamentals and Applications, 1st ed., Springer, 2016.

[10] A. Takeuchi, J. Jpn. Inst. Metal. 79 (2015) 157–168 https://doi.org/10.2320/ jinstmet.J2014046.

[11] A. Takechi, J. Jpn, Soc, Powder. Metall. 63 (2016) 209–216 https://doi.org/10. 2497/jjspm.63.209.

[12] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Materials Today 19 (2016) 349–362 https://doi.org/10.1016/j.mattod.2015.11.026.

[13] D.B. Miracle, O.N. Senkov, Acta Mater. 122 (2017) 448–511 https://doi.org/10. 1016/j.actamat.2016.08.081.

[14] T. Nagase, J. Soc. Mech. Eng. 121 (1192) (2018) 8–11 https://doi.org/10.1299/ jsmemag.121.1192_8.

[15] W. Zhang, P.K. Liew, Y. Zhang, Sci. China Mater. 61 (2018) 2–22 https://doi.org/ 10.1007/s40843-017-9195-8.

[16] D.B. Miracle, Nat. Commun. 10 (2019) 1805 https://doi.org/10.1038/ s41467-019-09700-1.

[17] A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, W. Zhang, JOM 66 (2014) 1984-1192 https://doi.org/10.1007/s11837-014-1085-x .

[18] M. Feuerbacher, M. Heidelmann, C. Thomas, Mater. Res. Lett. 3 (2015) 1–6 http: //doi.org/10.1080/21663831.2014.951493.

[19] A. Takeuchi, Intermetallics 69 (2016) 103–109 https://doi.org/10.1016/j. intermet.2015.10.022.

[20] L. Rogal, P. Bobrowski, F. Kormann, S. Divinski, F. Stein, B. Grabowski, Sci. Rep. 7 (2016) 2209 http://doi.org/10.1038/s41598-017-02385-w.

[21] A. Takeuchi, T. Wada, H. Kato, Mater. Trans. 60 (2019) 1666–1673 https://doi. org/10.2320/matertrans.M2019037.

[22] A. Takeuchi, T. Wada, H. Kato, Mater. Trans. 60 (2019) 2267–2276 https://doi. org/10.2320/matertrans.MT-M2019212.

[23] T. Nagase, M. Todai, T. Nakano, Mater. Trans. 61 (2020) 567–576 https://doi. org/10.2320/matertrans.MT-MK2019002.

[24] C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H. Bei, M. Lang, R.C. Ewing, W.L. Mao, Nat. Commun. 8 (15) (2017) 634 https://doi.org/10.1038/ ncomms15634.

[25] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, Mater. Res. Lett. 3 (2015) 95–99 https://doi.org/10.1080/21663831.2014.985855.

[26] K.V. Yusenko, S. Riva, P.A. Carvalho, M.V. Yusenko, S. Arnaboldi, A.S. Sulthikh, M. Hanfland, S.A. Gromilov, Scr. Mater. 138 (2017) 22–27 https://doi.org/10. 1016/j.scriptamat.2017.05.022.

[27] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534 (2016) 227–230 https://doi.org/10.1038/nature17981.

[28] Z. Li, F. Kormann, B. Grabowski, J. Neugebauer, D. Raabe, Acta Mater. 136 (2017) 262–270 https://doi.org/10.1016/j.actamat.2017.07.023.

[29] D. Wei, X. Li, J. Jiang, W. Heng, Y. Koizumi, W.-.M. Choi, B.-.J. Lee, H.S. Kim, H. Kato, A. Chiba, Scr. Mater. 165 (2019) 39–43 https://doi.org/10.1016/j. scriptamat.2019.02.018.

[30] N.D. Stepanov, N.Yu Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Mater. Lett. 211 (2018) 87–90 https://doi.org/10.1016/j.matlet.2017.09. 094.

[31] S.Y. Chen, Y. Tong, K.-.K. Tseng, J.-.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Scr. Mater. 158 (2019) 50– 56 https://doi.org/10.1016/j.scriptamat.2018.08.032.

[32] C. Yang, K. Aoyagi, H. Bian, A. Chiba, Mater. Lett. 254 (2019) 46–49 https://doi. org/10.1016/j.matlet.2019.07.027.

[33] Y. Cao, Y. Liu, Y. Li, B. Liu, A. Fu, Y. Nie, Int. J. Refract. Met. Hard Mater. 86 (2020) 105 132 https://doi.org/10.1016/j.ijrmhm.2019.105132 .

[34] Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, Sci. Rep. 4 (2014) 06200 1-5 https://doi.org/10.1038/srep06200 .

[35] Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143–150 https://doi.org/ 10.1016/j.actamat.2016.11.016.

[36] U.S. Hsu, U.D. Hung, J.W. Yeh, S.K. Chen, Y.S. Huang, C.C. Yang, Mater. Sci. Eng., A 460-461 (2007) 403–408 https://doi.org/10.1016/j.msea.2007.01.122.

[37] S. Guo, C. Ng, C.T. Liu, J. Alloys Compd. 557 (2013) 77–81 https://doi.org/10. 1016/j.jallcom.2013.01.007.

[38] A. Munitz, S. Samuha, E. Brosh, S. Salhov, N. Derimow, R. Abbaschian, Intermetallics 97 (2018) 77–84 https://doi.org/10.1016/j.intermet.2018.04.004.

[39] A. Munitz, M.J. Kaufman, J.P. Chandler, H. Kalaantari, R. Abbaschian, Mater. Sci. Eng., A 560 (2013) 633–642 https://doi.org/10.1016/j.msea.2012.10.007.

[40] P.H. Wu, N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, X.J. Wang, Mater. Sci. Eng. A 642 (2015) 142–149 https://doi.org/10.1016/j.msea.2015.06.061.

[41] N. Liu, P.H. Wu, P.J. Zhou, Z. Peng, X.J. Wang, Y.P. Lu, Intermetallics 72 (2016) 44–52 https://doi.org/10.1016/j.intermet.2016.01.008.

[42] P.H. Wu, N. Liu, P.J. Zhou, Z. Peng, W.D. Du, X.J. Wang, Y. Pan, Mater. Sci. Technol. 32 (2016) 576–580 https://doi.org/10.1179/1743284715Y.0000000127.

[43] W.L. Wang, L. Hu, S.B. Luo, L.J. Meng, D.L. Geng, B. Wei, Intermetallics 77 (2016) 41–45 https://doi.org/10.1016/j.intermet.2016.07.003.

[44] T. Guo, J. Li, J. Wang, Y. Wang, H. Kou, S. Niu, Intermetallics 86 (2017) 110–115 https://doi.org/10.1016/j.intermet.2017.03.021.

[45] Z. Peng, N. Liu, S.Y. Zhang, P.H. Wu, X.J. Wang, Mater. Sci. Technol. 33 (2017) 1352–1359 https://doi.org/10.1080/02670836.2017.1290736.

[46] A. Munitz, M.J. Kaufman, R. Abbaschian, Intermetallics 86 (2017) 59–72 https: //doi.org/10.1016/j.intermet.2017.03.015.

[47] S. Wang, Z. Chen, L.C. Feng, Y.Y. Liu, P. Zhang, Y.Z. Hea, Q.Q. Menga, J.Y. Zhanga, Mater. Charact. 144 (2018) 516–521 https://doi.org/10.1016/j.matchar.2018.08. 008.

[48] T. Nagase, Mater. Sci. Forum 941 (2018) 1238–1241 https://doi.org/10.4028/ www.scientific.net/MSF.941.1238.

[49] A. Munitz, I. Edry, E. Brosh, N. Derimow, B.E. MacDonald, E.J. Lavernia, R. Abbaschian, Intermetallics 112 (2019) 106 517 https://doi.org/10.1016/j.intermet. 2019.106517 .

[50] N. Derimow, R. Abbaschian, Entropy 20 (2018) 890 https://doi.org/10.3390/ e20110890.

[51] S.H. Whang, J. Mater. Sci. 21 (1986) 2224–2238 https://doi.org/10.1007/ BF01114261.

[52] S.A. Court, J.W. Sears, M.H. Loretto, H.L. Fraser, Mater. Sci. Eng. 98 (1988) 243– 249 https://doi.org/10.1016/0025-5416(88)90,163-2.

[53] T. Nagase, M. Matsumoto, Y. Fujii, J. Alloys Compd. 738 (2018) 440–447 https: //doi.org/10.1016/j.jallcom.2017.12.138.

[54] T. Nagase, M. Matsumoto, Y. Fujii, Microscopy 66 (S1) (2017) i22 https://doi. org/10.1093/jmicro/dfx064.

[55] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, APL Mater. 1 (1) (2013) 011002 https://doi.org/10.1063/1.4812323.

[56] https://materialsproject.org/ (accessed, 23 August 2019)

[57] T. Nagase, M. Suzuki, T. Tanaka, J. Alloys Compd. 619 (2015) 267–274 http://dx. doi.org/10.1016/j.jallcom.2014.08.229.

[58] T. Nagase, M. Suzuki, T. Tanaka, Intermetallics 61 (2015) 56–65 http://dx.doi. org/10.1016/j.intermet.2015.02.006.

[59] T. Nagase, M. Suzuki, T. Tanaka, J. Soc. Mater. Sci. 64 (2015) 175–182 http://dx. doi.org/10.2472/jsms.64.175.

[60] T. Nagase, M. Suzuki, T. Tanaka, J. Alloys Compd. 619 (2015) 311–318 http://dx. doi.org/10.1016/j.jallcom.2014.08.212.

[61] T. Nagase, Y. Umakoshi, J. Alloys Compd. 649 (2015) 1174–1181 http://dx.doi. org/10.1016/j.jallcom.2015.07.229.

[62] T. Nagase, M. Takemura, M. Matsumuro, M. Matsumoto, Y. Fujii, Mater. Des. 117 (2017) 338–345 http://dx.doi.org/10.1016/j.matdes.2016.12.092.

[63] T. Nagase, T. Terai, T. Kakeshita, M. Matsumoto, Y. Fujii, Mater. Trans. 60 (2019) 554–560 https://doi.org/10.2320/matertrans.Y-M2019803.

[64] A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817–2829 https://doi.org/10. 2320/matertrans.46.2817.

[65] Materials Project, HfZr, ID: mp-983,459, https://doi.org/10.17188/1316509

[66] T. Nagase, K. Mizuuchi, T. Nakano, Entropy 21 (2019) 483 https://doi.org/10. 3390/e21050483.

[67] T. Nagase, M. Takemura, M. Matsumuro, T. Maruyama, Mater. Trans. 59 (2018) 255–264 (2018) http://doi.org/10.2320/matertrans.F-M2017851 .

[68] T. Nagase, T. Kakeshita, K. Matsumura, K. Nakazawa, S. Furuya, N. Ozoe, K. Yoshino, Mater. Des. 184 (2019) 108172 172 (2019) https://doi.org/10.1016/j. matdes.2019.108172 .

[69] Materials Project, Ti, ID: mp-72, https://doi.org/10.17188/1287108

[70] Materials Project, Zr, ID: mp-131, https://doi.org/10.17188/1189385

[71] Materials Project, Y, ID: mp-983,459, https://doi.org/10.17188/1187627

[72] G. Qin, R. Chen, P.K. Liaw, Y. Gao, L. Wang, Y. Su, H. Ding, J. Guo, X. Li, Nanoscale 12 (2020) 3965–3976 https://doi.org/10.1039/C9NR08338C.

[73] G. Qin, R. Chen, P.K. Liaw, Y. Gao, X. Li, H. Zheng, L. Wang, Y. Su, J. Guo, H. Fu, Scr.. Mater. 172 (2019) 51–55 https://doi.org/10.1016/j.scriptamat.2019.07.008.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る