リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on functions of ANTH domain proteins in Arabidopsis thaliana」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on functions of ANTH domain proteins in Arabidopsis thaliana

室, 啓太 東京大学 DOI:10.15083/0002001649

2021.09.08

概要

Eukaryotic cells internalize nutrients, proteins, and membrane materials via multiple endocytic pathways. Clathrin-mediated endocytosis (CME) is the best-characterized pathway and is responsible for a number of major endocytic activities in plant cells. In mammals, epsin N-terminal homology (ENTH) and AP180 N-terminal homology (ANTH) domain-containing proteins are proposed to function in initiation of clathrin-coated pit formation, bridging coat components and cargo proteins to donor membranes. The Arabidopsis thaliana genome encodes eighteen ANTH domain proteins whereas metazoa and fungi have much fewer ANTH domain proteins, which implies that plant cell ANTH proteins have more divergent and significant functions than non-plant systems. However, despite their assumed importance, little is known about the physiological significance of this family in plants.

First, I examined the phenotypes of multiple mutants of ANTH domain proteins. I found that double mutant plants of PICALM5a (aka ECA2, At1g03050) and PICALM5b (At4g02650) exhibited reduced fertility (Figure 1A). The double mutant plants had short siliques, and the seed number in these siliques was significantly smaller than that of the wild-type plants (Figure 1B). Reciprocal cross-pollination revealed that mutant pollen was responsible for the reduced fertility. The double mutant was defective in pollen tube growth both in vivo and in vitro (Figure 1A).

Next I examined the functions of PICALM5a and PICALM5b. Both GFP-fused PICALM5a and PICALM5b were localized to the subapical region plasma membrane (PM) of growing pollen tubes. Clathrin coated vesicles are reported to be formed mainly in this region. So I examined whether clathrin light chain 1 (CLC1) and PICALM5a were co-localized (Figure 2). CLC1-GFP was localized to the punctate cytoplasmic structures and the subapical PM. It was also co-localized with PICALM5a-mRFP on the subapical PM, indicating the functions of PICALM5 proteins in CME.

In search of the cargo proteins of PICALM5a/5b whose mislocalization lead to the pollen tube growth defect, I examined functional relationship between PICALM5a/5b and the proteins reported to be involved in the regulation of pollen tube growth. I generated transgenic plants expressing GFP-fused SYP124, SYP125, SYP131, ANX1 or ANX2 in the wild-type or picalm5a picalm5b double mutant background. Although subcellular localizations of tip-localized SNARE proteins (SYP124, SYP125 and SYP131) were not affected by the double mutation, the tip localizations of ANX1 and ANX2 receptor-like kinases were severely impaired in picalm5a picalm5b pollen tubes, which indicated compromised recycling of ANX1 and ANX2 (Figure 3). Subcellular localization of ANX1 and ANX2 was not affected in picalm5a or picalm5b single mutant pollen tubes, indicating that PICALM5a and PICALM5b have overlapping function in regulating the localizations of ANX1 and ANX2. Mislocalization of ANX2-GFP in picalm5a picalm5b pollen tubes was rescued by the expression of PICALM5a-mRFP, which further indicated that PICALM5 proteins are responsible for the proper localization of ANX receptor-like kinases as well as the functional redundancy between PICALM5 proteins (Figure 4).

In growing pollen tubes, secretory vesicles are delivered to the tip region, where accumulated vesicles form inverted cone-shaped region, and supply cell wall and PM material. On the other hand, excessive PM materials are recycled via endocytosis. Studies on endocytosis in growing pollen tubes suggested that most of the endocytosed vesicles are rapidly recycled to the secretory pathway. The disturbed tip localization of ANX1 and ANX2 in the picalm5a picalm5b double mutant pollen tube indicates, together with the subapical localization of PICALM5a and PICALM5b, that PICALM5a and PICALM5b have a redundant role in CME in pollen tubes, loading specific cargo proteins such as ANX1 and ANX2 into vesicles.

この論文で使われている画像

参考文献

H. D. Blackbourn and A. P. Jackson (1996). "Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes." Journal of Cell Science 109 ( Pt 4): 777-786.

L. C. Boavida and S. McCormick (2007). "Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana." Plant Journal 52(3): 570-582. doi: 10.1111/j.1365-313X.2007.03248.x

A. Boisson-Dernier, D. S. Lituiev, A. Nestorova, C. M. Franck, S. Thirugnanarajah and U. Grossniklaus (2013). "ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases." PLoS Biology 11(11): e1001719. doi: 10.1371/journal.pbio.1001719

X. Chen, N. G. Irani and J. Friml (2011). "Clathrin-mediated endocytosis: the gateway into plant cells." Current Opinion in Plant Biology 14(6): 674-682. doi: 10.1016/j.pbi.2011.08.006

J. O. De Craene, R. Ripp, O. Lecompte, J. D. Thompson, O. Poch and S. Friant (2012). "Evolutionary analysis of the ENTH/ANTH/VHS protein superfamily reveals a coevolution between membrane trafficking and metabolism." BMC Genomics 13. doi: 10.1186/1471-2164-13-297

J. Derksen, T. Rutten, I. K. Lichtscheidl, A. H. N. Dewin, E. S. Pierson and G. Rongen (1995). "Quantitative analysis of the distribution of organelles in tobacco pollen Tubes : implications for exocytosis and endocytosis." Protoplasma 188(3-4): 267-276. doi: 10.1007/Bf01280379

K. Enami, M. Ichikawa, T. Uemura, N. Kutsuna, S. Hasezawa, T. Nakagawa, A. Nakano and M. H. Sato (2009). "Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana." Plant and Cell Physiology 50(2): 280-289. doi: 10.1093/pcp/pcn197

Q. N. Feng, H. Kang, S. J. Song, F. R. Ge, Y. L. Zhang, E. Li, S. Li and Y. Zhang (2016). "Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes." Plant Physiology 170(2): 841-856. doi: 10.1104/pp.15.01600

M. G. Ford, B. M. Pearse, M. K. Higgins, Y. Vallis, D. J. Owen, A. Gibson, C. R. Hopkins, P. R. Evans and H. T. McMahon (2001). "Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes." Science 291(5506): 1051-1055. doi: 10.1126/science.291.5506.1051

A. Gadeyne, C. Sanchez-Rodriguez, S. Vanneste, S. Di Rubbo, H. Zauber, K. Vanneste, J. Van Leene, N. De Winne, D. Eeckhout, G. Persiau, E. Van De Slijke, B. Cannoot, L. Vercruysse, J. R. Mayers, M. Adamowski, U. Kania, M. Ehrlich, A. Schweighofer, T. Ketelaar, S. Maere, S. Y. Bednarek, J. Friml, K. Gevaert, E. Witters, E. Russinova, S. Persson, G. De Jaeger and D. Van Damme (2014). "The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants." Cell 156(4): 691-704. doi: 10.1016/j.cell.2014.01.039

Z. Ge, T. Bergonci, Y. Zhao, Y. Zou, S. Du, M. C. Liu, X. Luo, H. Ruan, L. E. Garcia-Valencia, S. Zhong, S. Hou, Q. Huang, L. Lai, D. S. Moura, H. Gu, J. Dong, H. M. Wu, T. Dresselhaus, J. Xiao, A. Y. Cheung and L. J. Qu (2017). "Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling." Science 358(6370): 1596-1600. doi: 10.1126/science.aao3642

T. Itoh, S. Koshiba, T. Kigawa, A. Kikuchi, S. Yokoyama and T. Takenawa (2001). "Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis." Science 291(5506): 1047-1051. doi: 10.1126/science.291.5506.1047

H. Kaya, R. Nakajima, M. Iwano, M. M. Kanaoka, S. Kimura, S. Takeda, T. Kawarazaki, E. Senzaki, Y. Hamamura, T. Higashiyama, S. Takayama, M. Abe and K. Kuchitsu (2014). "Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth." Plant Cell 26(3): 1069-1080. doi: 10.1105/tpc.113.120642

T. Ketelaar, M. E. Galway, B. M. Mulder and A. M. C. Emons (2008). "Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes." Journal of Microscopy 231(2): 265-273. doi: 10.1111/j.1365-2818.2008.02031.x

S. A. Lancelle and P. K. Hepler (1992). "Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum." Protoplasma 167(3-4): 215-230. doi: 10.1007/Bf01403385

V. Legendre-Guillemin, S. Wasiak, N. K. Hussain, A. Angers and P. S. McPherson (2004). "ENTH/ANTH proteins and clathrin-mediated membrane budding." Journal of Cell Science 117(Pt 1): 9-18. doi: 10.1242/jcs.00928

H. T. McMahon and E. Boucrot (2011). "Molecular mechanism and physiological functions of clathrin-mediated endocytosis." Nature Reviews: Molecular Cell Biology 12(8): 517-533. doi: 10.1038/nrm3151

M. A. Mecchia, G. Santos-Fernandez, N. N. Duss, S. C. Somoza, A. Boisson-Dernier, V. Gagliardini, A. Martinez-Bernardini, T. N. Fabrice,C. Ringli, J. P. Muschietti and U. Grossniklaus (2017). "RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis." Science 358(6370): 1600-1603. doi: 10.1126/science.aao5467

M. Messa, R. Fernandez-Busnadiego, E. W. Sun, H. Chen, H. Czapla, K. Wrasman, Y. Wu, G. Ko, T. Ross, B. Wendland and P. De Camilli (2014). "Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits." Elife 3: e03311. doi: 10.7554/eLife.03311

S. E. Miller, B. M. Collins, A. J. McCoy, M. S. Robinson and D. J. Owen (2007). "A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles." Nature 450(7169): 570-574. doi: 10.1038/nature06353

S. E. Miller, D. A. Sahlender, S. C. Graham, S. Honing, M. S. Robinson, A. A. Peden and D. J. Owen (2011). "The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM." Cell 147(5): 1118-1131. doi: 10.1016/j.cell.2011.10.038

S. Miyazaki, T. Murata, N. Sakurai-Ozato, M. Kubo, T. Demura, H. Fukuda and M. Hasebe (2009). "ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization." Current Biology 19(15): 1327-1331. doi: 10.1016/j.cub.2009.06.064

Y. Mizuta and T. Higashiyama (2014). "Antisense gene inhibition by phosphorothioate antisense oligonucleotide in Arabidopsis pollen tubes." Plant Journal 78(3): 516-526. doi: 10.1111/tpj.12461

Y. Mizuta, D. Kurihara and T. Higashiyama (2015). "Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues." Protoplasma 252(5): 1231-1240. doi: 10.1007/s00709-014-0754-5

A. Moscatelli, F. Ciampolini, S. Rodighiero, E. Onelli, M. Cresti, N. Santo and A. Idilli (2007). "Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold." Journal of Cell Science 120(21): 3804-3819. doi: 10.1242/jcs.012138

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai, Y. Niwa, K. Toyooka, K. Matsuoka, T. Jinbo and T. Kimura (2007). "Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation." Journal of Bioscience and Bioengineering 104(1): 34-41. doi: 10.1263/jbb.104.34

M. L. Nonet, A. M. Holgado, F. Brewer, C. J. Serpe, B. A. Norbeck, J. Holleran, L. Wei, E. Hartwieg, E. M. Jorgensen and A. Alfonso (1999). "UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles." Molecular Biology of the Cell 10(7): 2343-2360.

S. K. Park, R. Howden and D. Twell (1998). "The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate." Development 125(19): 3789-3799.

R. M. Parton, S. Fischer-Parton, M. K. Watahiki and A. J. Trewavas (2001). "Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes." Journal of Cell Science 114(Pt 14): 2685-2695.

J. M. Picton and M. W. Steer (1983). "Membrane recycling and the control of secretory activity in pollen tubes." Journal of Cell Science 63(Sep): 303-310.

Y. Qin and Z. Yang (2011). "Rapid tip growth: insights from pollen tubes." Seminars in Cell and Developmental Biology 22(8): 816-824. doi: 10.1016/j.semcdb.2011.06.004

M. J. Rodriguez-Enriquez, S. Mehdi, H. G. Dickinson and R. T. Grant-Downton (2013). "A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen." New Phytologist 197(2): 668-679. doi: 10.1111/nph.12037

W. G. Rosen and S. R. Gawlik (1966). "Fine structure of Lily pollen tubes following various fixation and staining procedures." Protoplasma 61(1-2): 181-191. doi: 10.1007/Bf01247918

M. Schmid, T. S. Davison, S. R. Henz, U. J. Pape, M. Demar, M. Vingron, B. Scholkopf, D. Weigel and J. U. Lohmann (2005). "A gene expression map of Arabidopsis thaliana development." Nature Genetics 37(5): 501-506. doi: 10.1038/ng1543

D. Slane, I. Reichardt, F. El Kasmi, M. Bayer and G. Jurgens (2017). "Evolutionarily diverse SYP1 Qa-SNAREs jointly sustain pollen tube growth in Arabidopsis." Plant Journal 92(3): 375-385. doi: 10.1111/tpj.13659

K. Song, M. Jang, S. Y. Kim, G. Lee, G. J. Lee, D. H. Kim, Y. Lee, W. Cho and I. Hwang (2012). "An A/ENTH domain-containing protein functions as an adaptor for clathrin-coated vesicles on the growing cell plate in Arabidopsis root cells." Plant Physiology 159(3): 1013-1025. doi: 10.1104/pp.112.199380

M. W. Steer and J. M. Steer (1989). "Pollen tube tip growth." New Phytologist 111(3): 323-358. doi: 10.1111/j.1469-8137.1989.tb00697.x

S. C. Tiwari and V. S. Polito (1988). "Organization of the cytoskeleton in pollen tubes of Pyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin." Protoplasma 147(2-3): 100-112. doi: 10.1007/Bf01403337

F. Vogler, C. Schmalzl, M. Englhart, M. Bircheneder and S. Sprunck (2014). "Brassinosteroids promote Arabidopsis pollen germination and growth." Plant Reproduction 27(3): 153-167. doi: 10.1007/s00497-014-0247-x

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson and N. J. Provart (2007). "An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets." PloS One 2(8): e718. doi: 10.1371/journal.pone.0000718

Y. Zhao, A. Yan, J. A. Feijo, M. Furutani, T. Takenawa, I. Hwang, Y. Fu and Z. B. Yang (2010). "Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and Tobacco." Plant Cell 22(12): 4031-4044. doi: 10.1105/tpc.110.076760

J. Zouhar and M. Sauer (2014). "Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion." Plant Cell 26(11): 4232-4244. doi: 10.1105/tpc.114.131680

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る