リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fabrication of Metal Halide Perovskites via Mist Deposition Method for Solar Cells and X-Ray Detection Applications」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fabrication of Metal Halide Perovskites via Mist Deposition Method for Solar Cells and X-Ray Detection Applications

Haruta, Yuki 京都大学 DOI:10.14989/doctor.k24010

2022.03.23

概要

本論文は、太陽電池や X 線検出器への応用が期待される半導体材料である金属ハライドペロブスカイトに関して、実用化への足がかりとなる成膜手法としてミストデポジション法を提案し、本手法による金属ハライドペロブスカイトの成膜とそのデバイス応用に関する研究をまとめたもので、6 章からなっている。

第1章は序論で、昨今のエネルギー問題に対する取り組みの一つとして、次世代の機能性材料を低エネルギー消費のプロセスで開発することの重要性を提起し、このコンセプトに基づく材料として、溶液プロセスでの作製が可能であり、かつ優れた光電変換特性を示す金属ハライドペロブスカイトについてまとめている。また、金属ハライドペロブスカイトのデバイス応用が期待される一方で、CH3NH3PbI3 などの有機カチオンを含む一部の金属ハライドペロブスカイトでは、常温環境下で容易に劣化が生じるといった耐久性の低さを指摘している。さらに金属ハライドペロブスカイト全体の課題として、太陽電池モジュールや X 線撮像素子など、大型デバイスへの適用が可能な、スケーラブルな成膜手法が未発達である点について指摘している。指摘した課題の解決策として、金属ハライドペロブスカイトの中でも特に耐久性に優れた材料として知られる CsPbBr3 や Cs2AgBiBr6 の利用を提案し、さらに、実用化への足がかりとなる新たなスケーラブルプロセスとして、ミストデポジション法を提案している。

第2章では、ミストデポジション法による CsPbBr3 の成膜についてまとめている。本手法で用いる溶媒の前駆体の溶解度と溶媒の粘度の重要性を考慮し、ジメチルスルホキシドとジメチルホルムアミドの2種の有機溶媒を混ぜた、混合溶媒を利用することを提案している。また、基板温度が得られる膜の形状や結晶配向性に与える影響について調べ、緻密かつ高配向性を有する CsPbBr3 膜が得られる条件を明らかにしている。緻密な CsPbBr3 膜が得られるような成膜条件において、成膜プロセスを何度も繰り返すことで、結晶がボトムアップに成長し、柱状結晶からなる緻密な厚膜が得られることを明らかにしている。さらに柱状結晶からなる CsPbBr3 膜について、柱に沿った方向での電荷移動度が、単結晶 CsPbBr3 に匹敵する高い値を示すことを明らかにしている。

第3章では、ミストデポジション法で成膜した CsPbBr3 膜の太陽電池応用について検討している。本章の序論においては、従来の薄膜作製法であるスピンコート法では、基板全面を均一に覆う CsPbBr3 薄膜の作製が困難であり、これは CsBr の溶解度が低く、スピンコート法による一度の溶液塗布、乾燥では基板全面を被覆できるだけの前駆体を供給しにくいことに起因すると指摘している。これに対し、ミストデポジション法では、低濃度の溶液を用いても、無数のミストによって基板に次々と結晶核が形成されるため、被覆率を向上できるのではないかと予想し、実際に厚さ 340 nm 程度の薄さでも基板全面を均一に被覆できたことを報告している。基板全面を被覆することで、従来の被覆率の悪い CsPbBr3 薄膜を用いた太陽電池に比べ、漏れ電流が少なく、高い開放端電圧を示す太陽電池が得られている。

第4章では、ミストデポジション法で成膜した CsPbBr3 膜の X 線検出器応用について検討している。X 線の吸収に必要な厚さを得るため、第2章と同様の手法で成膜時間を伸ばし、膜厚 100 μm 以上の厚膜の作製を試みた場合、膜が基板から剥離する問題が生じることを明らかにしている。基板と CsPbBr3 膜の熱膨張係数の差に起因する熱応力が剥離の原因であると考察し、ヤング率の小さなポリマー層を間に緩衝層として挟むことで、剥離を抑制することに成功している。これにより、緻密な柱状結晶からなる膜厚 110 μm 程度の CsPbBr3 厚膜を用いた X 線検出器を試作し、タングステン管球を用いて管電圧 70 kV で発生させた X 線の検出を実現している。

第5章では、本手法を他の金属ハライドペロブスカイトにも適用できることを示す一例として Cs2AgBiBr6 の成膜を試みている。ミストデポジション法を用いることで、CsPbBr3 と同様に柱状結晶からなる Cs2AgBiBr6 厚膜が成膜できることを明らかにしている。X 線検出器を試作し、先行研究における多結晶 Cs2AgBiBr6 厚膜を用いた検出器と比べても高い検出感度を示すことを明らかにしている。さらに、基板温度と原料溶液濃度を中心とした成膜条件の精査により、本手法で結晶が柱状に成長するメカニズムについて考察した結果について報告している。考察したメカニズムに基づき、CH3NH3PbBr3 の柱状結晶膜の作製にも成功している。

第6章は総括で、本論文で得られた成果および今後の展望についてまとめている。

この論文で使われている画像

参考文献

References for Chapter 1

1. Energy mix. Our World in Data https://ourworldindata.org/energy-mix.

2. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131, 6050–6051 (2009).

3. Hao, F., Stoumpos, C. C., Chang, R. P. H. & Kanatzidis, M. G. Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. Journal of the American Chemical Society 136, 8094–8099 (2014).

4. Protesescu, L. et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 15, 3692–3696 (2015).

5. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites.Nature Communications 10, 2560 (2019).

6. Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications 8, 1–7 (2017).

7. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

8. Komsa, H.-P. & Pasquarello, A. Identification of defect levels at InxGa1-xAs/oxide interfaces through hybrid functionals. Microelectronic Engineering 88, 1436–1439 (2011).

9. Kang, J. & Wang, L.-W. High Defect Tolerance in Lead Halide Perovskite CsPbBr3. The Journal of Physical Chemistry Letters 8, 489–493 (2017).

10. Jin, H. et al. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons 7, 397–410 (2020).

11. Stranks, S. D. et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341–344 (2013).

12. Dong, Q. et al. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

13. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics 10, 333–339 (2016).

14. Song, J. et al. Ultralarge All-Inorganic Perovskite Bulk Single Crystal for High- Performance Visible-Infrared Dual-Modal Photodetectors. Advanced Optical Materials 5, 1700157 (2017).

15. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics 11, 726–732 (2017).

16. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy. Nature Materials 16, 826–833 (2017).

17. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications 9, 1609 (2018).

18. Zhang, P. et al. Anisotropic Optoelectronic Properties of Melt-Grown Bulk CsPbBr3 Single Crystal. The Journal of Physical Chemistry Letters 9, 5040–5046 (2018).

19. Liu, Y. et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Materials Today 22, 67– 75 (2019).

20. Peng, J. et al. Crystallization of CsPbBr3 single crystals in water for X-ray detection.Nature Communications 12, 1531 (2021).

21. Liu, Y. et al. Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances 7, 1–13 (2021).

22. Zhou, C. & Lin, S. Carbon‐Electrode Based Perovskite Solar Cells: Effect of Bulk Engineering and Interface Engineering on the Power Conversion Properties. Solar RRL 1900190, 1900190 (2019).

23. Yang, S. et al. Stabilizing halide perovskite surfaces for solar cell operation with wide- bandgap lead oxysalts. Science 365, 473–478 (2019).

24. Kim, H.-S. et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2, 1–7 (2012).

25. Lu, J., Chen, S.-C. & Zheng, Q. Defect Passivation of CsPbIBr2 Perovskites for High- Performance Solar Cells with Large Open-Circuit Voltage of 1.28 V. ACS Applied Energy Materials 1, 5872–5878 (2018).

26. Fakharuddin, A., Schmidt-Mende, L., Garcia-Belmonte, G., Jose, R. & Mora-Sero, I. Interfaces in Perovskite Solar Cells. Advanced Energy Materials 7, 1700623 (2017).

27. Jeon, Y.-J. et al. Planar heterojunction perovskite solar cells with superior reproducibility.Scientific Reports 4, 6953 (2015).

28. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nature Photonics 13, 460–466 (2019).

29. Guerrero, A. et al. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells.ACS Nano 10, 218–224 (2016).

30. Ding, J., Duan, J., Guo, C. & Tang, Q. Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering. Journal of Materials Chemistry A 6, 21999–22004 (2018).

31. Yoon, H., Kang, S. M., Lee, J.-K. & Choi, M. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy & Environmental Science 9, 2262–2266 (2016).

32. Shen, B. et al. Conformal coverage of TiO2 compact layers for high-efficient planar heterojunction perovskite solar cells. Organic Electronics 59, 177–183 (2018).

33. Tong, G. et al. High Efficient Hole Extraction and Stable All‐Bromide Inorganic Perovskite Solar Cells via Derivative‐Phase Gradient Bandgap Architecture. Solar RRL 3, 1900030 (2019).

34. Domanski, K. et al. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. ACS Nano 10, 6306–6314 (2016).

35. Cojocaru, L. et al. Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells. Chemistry Letters 44, 674–676 (2015).

36. Wang, Q. et al. Large Conduction Band Energy Offset Is Critical for High Fill Factors in Inorganic Perovskite Solar Cells. ACS Energy Letters 5, 2343–2348 (2020).

37. Yang, D. et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications 9, 3239 (2018).

38. Wang, F. et al. Highly Efficient and Stable Perovskite Solar Cells by Interfacial Engineering Using Solution-Processed Polymer Layer. The Journal of Physical Chemistry C 121, 1562–1568 (2017).

39. Zhang, X., Zhang, W., Wu, T., Wu, J. & Lan, Z. High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers. Solar Energy 181, 293–300 (2019).

40. Li, G. et al. Overcoming the Limitations of Sputtered Nickel Oxide for High-Efficiency and Large-Area Perovskite Solar Cells. Advanced Science 4, 1700463 (2017).

41. Xia, X. et al. Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 10, 44501–44510 (2018).

42. Liu, X. et al. 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy 50, 201–211(2018).

43. Zhang, H. et al. Pinhole-Free and Surface-Nanostructured NiOx Film by Room- Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano 10, 1503–1511 (2016).

44. Savory, C. N., Walsh, A. & Scanlon, D. O. Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? ACS Energy Letters 1, 949–955 (2016).

45. Kulbak, M. et al. Cesium Enhances Long-Term Stability of Lead Bromide Perovskite- Based Solar Cells. The Journal of Physical Chemistry Letters 7, 167–172 (2016).

46. Hu, J. et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nature Communications 10, 1276 (2019).

47. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

48. Park, B. et al. Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nature Communications 9, 3301 (2018).

49. Son, D.-Y. et al. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering. Journal of the American Chemical Society 140, 1358–1364 (2018).

50. Yuan, H. et al. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. Journal of Materials Chemistry A 6, 24324–24329 (2018).

51. Thote, A. et al. Stable and Reproducible 2D/3D Formamidinium-Lead-Iodide Perovskite Solar Cells. ACS Applied Energy Materials 2, 2486–2493 (2019).

52. Hu, M. et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability.Nature Communications 11, 151 (2020).

53. McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

54. Zhang, C. et al. Fabrication Strategy for Efficient 2D/3D Perovskite Solar Cells Enabled by Diffusion Passivation and Strain Compensation. Advanced Energy Materials 10, 2002004 (2020).

55. Yi, H. et al. Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability. Journal of Power Sources 466, 228320 (2020).

56. Guo, H. et al. Doping with SnBr2 in CsPbBr3 to enhance the efficiency of all-inorganic perovskite solar cells. Journal of Materials Chemistry C 7, 11234–11243 (2019).

57. Kim, S.-G. et al. Potassium ions as a kinetic controller in ionic double layers for hysteresis- free perovskite solar cells. Journal of Materials Chemistry A 7, 18807–18815 (2019).

58. Zheng, Y. et al. High‐Performance CsPbIxBr3-x All‐Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. Advanced Functional Materials 30, 2000457 (2020).

59. Li, B., Zhang, Y., Zhang, L. & Yin, L. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance. Journal of Power Sources 360, 11–20 (2017).

60. Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A 4, 17636–17642 (2016).

61. Chern, Y.-C. et al. Grain structure control and greatly enhanced carrier transport by CH3NH3PbCl3 interlayer in two-step solution processed planar perovskite solar cells. Organic Electronics 38, 362–369 (2016).

62. Zhao, Y. & Zhu, K. CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. The Journal of Physical Chemistry C 118, 9412–9418 (2014).

63. Wang, S.-Q. et al. Improving the phase stability of inorganic lead halide perovskites through K/Rb doping. Applied Physics Express 12, 051017 (2019).

64. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite- sensitized solar cells. Nature 499, 316 (2013).

65. Wakamiya, A. et al. Reproducible Fabrication of Efficient Perovskite-based Solar Cells: X-ray Crystallographic Studies on the Formation of CH3NH3PbI3 Layers. Chemistry Letters 43, 711–713 (2014).

66. Lee, D. K., Jeong, D. N., Ahn, T. K. & Park, N. G. Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency. ACS Energy Letters 4, 2393–2401 (2019).

67. Feng, M., You, S., Cheng, N. & Du, J. High quality perovskite film solar cell using methanol as additive with 19.5% power conversion efficiency. Electrochimica Acta 293, 356–363 (2019).

68. Matsui, T., Seo, J.-Y., Saliba, M., Zakeeruddin, S. M. & Grätzel, M. Room-Temperature Formation of Highly Crystalline Multication Perovskites for Efficient, Low-Cost Solar Cells. Advanced Materials 29, 1606258 (2017).

69. Eggers, H. et al. Inkjet‐Printed Micrometer‐Thick Perovskite Solar Cells with LargeColumnar Grains. Advanced Energy Materials 10, 1903184 (2020).

70. Wang, Y. et al. Patterned Wettability Surface for Competition‐Driving Large‐Grained Perovskite Solar Cells. Advanced Energy Materials 9, 1900838 (2019).

71. Mathies, F. et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. Journal of Materials Chemistry A 4, 19207–19213 (2016).

72. Wang, R. et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 3, 1–14 (2019).

73. Gong, X. et al. Controllable Perovskite Crystallization by Water Additive for High- Performance Solar Cells. Advanced Functional Materials 25, 6671–6678 (2015).

74. Chen, W. et al. Conjugated Polymer–Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite Solar Cells. Advanced Functional Materials 1808855, 1808855 (2019).

75. Wang, Z. et al. Structured crystallization for efficient all-inorganic perovskite solar cells with high phase stability. Journal of Materials Chemistry A 7, 20390–20397 (2019).

76. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter- scale grains. Science 347, 522–525 (2015).

77. Hu, H. et al. Nucleation and crystal growth control for scalable solution-processed organic–inorganic hybrid perovskite solar cells. Journal of Materials Chemistry A 8, 1578–1603 (2020).

78. Zhang, K. et al. A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nature Communications 11, 1006 (2020).

79. Xie, F. et al. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy & Environmental Science 10, 1942–1949 (2017).

80. Cao, X. et al. Fabrication of Perovskite Films with Large Columnar Grains via Solvent- Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells. ACS Applied Energy Materials 1, 868–875 (2018).

81. Wang, P. et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature Communications 9, 2225 (2018).

82. Zhu, L. et al. Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells †. J. Mater. Chem. A 5, 20874–20881 (2017).

83. Huang, Z., Hu, X., Liu, C., Tan, L. & Chen, Y. Nucleation and Crystallization Control viaPolyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance. Advanced Functional Materials 27, 1703061 (2017).

84. Chen, G. et al. Crack-free CH3NH3PbI3 layer via continuous dripping method for high- performance mesoporous perovskite solar cells. Applied Surface Science 392, 960–965 (2017).

85. Ahn, N. et al. Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide.J. Am. Chem. Soc 137, 8696–8699 (2015).

86. Bai, Y. et al. A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy 34, 58–68 (2017).

87. Best Research-Cell Photovoltaic Efficiency Chart. NREL https://www.nrel.gov/pv/cell- efficiency.html.

88. Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nature Materials 14, 1032– 1039 (2015).

89. Li, H. & Zhang, W. Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews 120, 9835–9950 (2020).

90. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

91. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nature Communications 10, 1066 (2019).

92. Xu, X. et al. Halide perovskites: A dark horse for direct X‐ray imaging. EcoMateom2.12064 (2020) doi:10.1002/eom2.12064.

93. Li, Z. et al. Halide perovskites for high-performance X-ray detector. Materials Today 48, 155–175 (2021).

94. Wu, H., Ge, Y., Niu, G. & Tang, J. Metal Halide Perovskites for X-Ray Detection and Imaging. Matter 4, 144–163 (2021).

95. Zhou, Y., Chen, J., Bakr, O. M. & Mohammed, O. F. Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Letters 6, 739–768 (2021).

96. He, Y., Hadar, I. & Kanatzidis, M. G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nature Photonics 16, 14–26 (2022).

97. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. Journal of Physics D: Applied Physics 33, 2853–2865 (2000).

98. del Sordo, S. et al. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications. Sensors 9, 3491–3526 (2009).

99. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites.Nature Photonics 9, 444–449 (2015).

100. Huang, Y. et al. A-site Cation Engineering for Highly Efficient MAPbI3 Single-Crystal X- ray Detector. Angewandte Chemie International Edition 58, 17834–17842 (2019).

101. Wang, X. et al. PIN Diodes Array Made of Perovskite Single Crystal for X-Ray Imaging.physica status solidi (RRL) - Rapid Research Letters 12, 1800380 (2018).

102. Li, J. et al. Rubidium Doping to Enhance Carrier Transport in CsPbBr3 Single Crystals for High-Performance X-Ray Detection. ACS Applied Materials & Interfaces 12, 989–996 (2020).

103. Fu, R. et al. Stability Challenges for Perovskite Solar Cells. ChemNanoMat 5, 253–265 (2019).

104. Niu, G., Guo, X. & Wang, L. Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 3, 8970–8980 (2015).

105. Hu, Y., Qiu, T., Bai, F., Ruan, W. & Zhang, S. Highly Efficient and Stable Solar Cells with 2D MA3Bi2I9/3D MAPbI3 Heterostructured Perovskites. Advanced Energy Materials 8, 1703620 (2018).

106. Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science 7, 3061 (2014).

107. Nakamura, T. et al. Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nature Communications 11, 3008 (2020).

108. Kim, J., Ho-Baillie, A. & Huang, S. Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells. Solar RRL 3, 1–16 (2019).

109. Matteocci, F. et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy 30, 162–172 (2016).

110. McKenna, B., Troughton, J. R., Watson, T. M. & Evans, R. C. Enhancing the stability of organolead halide perovskite films through polymer encapsulation. RSC Advances 7, 32942–32951 (2017).

111. Ramos, F. J. et al. Versatile perovskite solar cell encapsulation by low-temperature ALD- Al2O3 with long-term stability improvement. Sustainable Energy & Fuels 2, 2468–2479 (2018).

112. Kim, H. et al. Enhanced Stability of MAPbI3 Perovskite Solar Cells using Poly(p-chloro- xylylene) Encapsulation. Scientific Reports 9, 15461 (2019).

113. Mohammadi, M. et al. Encapsulation Strategies for Highly Stable Perovskite Solar Cells under Severe Stress Testing: Damp Heat, Freezing, and Outdoor Illumination Conditions. ACS Applied Materials & Interfaces 13, 45455–45464 (2021).

114. Kulbak, M., Cahen, D. & Hodes, G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. The Journal of Physical Chemistry Letters 6, 2452–2456 (2015).

115. Bishop, J. E., Routledge, T. J. & Lidzey, D. G. Advances in Spray-Cast Perovskite Solar Cells. The Journal of Physical Chemistry Letters 9, 1977–1984 (2018).

116. Fai, C. et al. CsPbIBr2 Perovskite Solar Cell by Spray- Assisted Deposition. ACS Energy Lett. 1, 573–577 (2016).

117. Barrows, A. T. et al. Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014).

118. Chang, W.-C., Lan, D.-H., Lee, K.-M., Wang, X.-F. & Liu, C.-L. Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers. ChemSusChem 10, 1405–1412 (2017).

119. Duan, J. et al. Spray-assisted deposition of CsPbBr3 films in ambient air for large-area inorganic perovskite solar cells. Materials Today Energy 10, 146–152 (2018).

120. Das, S. et al. High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing. ACS Photonics 2, 680–686 (2015).

121. Rocks, C., Svrcek, V., Maguire, P. & Mariotti, D. Understanding surface chemistry during MAPbI3 spray deposition and its effect on photovoltaic performance. Journal of Materials Chemistry C 5, 902–916 (2017).

122. Park, M. et al. Highly Reproducible Large-Area Perovskite Solar Cell Fabrication via Continuous Megasonic Spray Coating of CH3NH3PbI3. Small 15, 1804005 (2019).

123. Liang, Z. et al. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Advances 5, 60562–60569 (2015).

124. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

125. Mallajosyula, A. T. et al. Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today 3, 96–102 (2016).

126. Burkitt, D., Searle, J. & Watson, T. Perovskite solar cells in N-I-P structure with four slot- die-coated layers. Royal Society Open Science 5, 172158 (2018).

127. Whitaker, J. B. et al. Scalable slot-die coating of high performance perovskite solar cells.Sustainable Energy & Fuels 2, 2442–2449 (2018).

128. Yang, Z. et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances 7, 1–14 (2021).

129. Li, J. et al. 20.8% Slot‐Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO‐ Content and Age of 2‐ME Based Precursor Inks. Advanced Energy Materials 11, 2003460 (2021).

130. Wang, X. et al. Solution-Processed Halide Perovskite Single Crystals with Intrinsic Compositional Gradients for X-ray Detection. Chemistry of Materials 32, 4973–4983 (2020).

131. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics 11, 315–321 (2017).

132. Wang, X. et al. Low-noise X-ray PIN photodiodes made of perovskite single crystals by solution-processed dopant incorporated epitaxial growth. Nano Energy 89, 106311 (2021).

133. Faheem, M. B. et al. All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization. ACS Energy Letters 5, 290–320 (2020).

134. Greul, E., Petrus, M. L., Binek, A., Docampo, P. & Bein, T. Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A 5, 19972–19981 (2017).

135. Tang, M. et al. Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chemical Engineering Journal 375, 121930 (2019).

136. Duan, J., Wang, Y., Yang, X. & Tang, Q. Alkyl‐Chain‐Regulated Charge Transfer in Fluorescent Inorganic CsPbBr3 Perovskite Solar Cells. Angewandte Chemie International Edition 59, 4391–4395 (2020).

137. Duan, J., Zhao, Y., He, B. & Tang, Q. High-Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. Angewandte Chemie International Edition 57, 3787–3791 (2018).

138. Zhou, Q., Duan, J., Yang, X., Duan, Y. & Tang, Q. Interfacial Strain Release from the WS2/CsPbBr3 van der Waals Heterostructure for 1.7 V Voltage All‐Inorganic Perovskite Solar Cells. Angewandte Chemie 132, 22181–22185 (2020).

139. Duan, J., Zhao, Y., Wang, Y., Yang, X. & Tang, Q. Hole‐Boosted Cu(Cr,M)O2 Nanocrystals for All‐Inorganic CsPbBr3 Perovskite Solar Cells. Angewandte Chemie International Edition 58, 16147–16151 (2019).

140. Zhao, Y., Duan, J., Wang, Y., Yang, X. & Tang, Q. Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V. Nano Energy 67, 104286 (2020).

141. Ou, Z. et al. Improvement of CsPbBr3 photodetector performance by tuning the morphology with PMMA additive. Journal of Alloys and Compounds 821, 153344 (2020).

142. Li, C. et al. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Materials and Solar Cells 172, 341–346 (2017).

143. Saidaminov, M. I. et al. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection. Advanced Optical Materials 5, 1600704 (2017).

144. Yang, Z. et al. Spray-Coated CsPbBr3 Quantum Dot Films for Perovskite Photodiodes.ACS Applied Materials & Interfaces 10, 26387–26395 (2018).

145. Zeng, J. et al. Space-Confined Growth of CsPbBr3 Film Achieving Photodetectors with High Performance in All Figures of Merit. Advanced Functional Materials 28, 1804394 (2018).

146. Feng, Y. et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection. Journal of Materials Chemistry C 8, 11360–11368 (2020).

147. He, Y. et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ- rays. Nature Photonics 15, 36–42 (2021).

148. Xu, Q. et al. CsPbBr3 Single Crystal X-ray Detector with Schottky Barrier for X-ray Imaging Application. ACS Applied Electronic Materials 2, 879–884 (2020).

149. Forth, L. J. et al. Sensitive X-ray Detectors Synthesised from CsPbBr3. in 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) 1–5 (IEEE, 2019). doi:10.1109/NSS/MIC42101.2019.9059728.

150. Fan, Z. et al. Solution‐Processed MAPbBr3 and CsPbBr3 Single‐Crystal Detectors with Improved X‐Ray Sensitivity via Interfacial Engineering. physica status solidi (a) 217, 2000104 (2020).

151. Stoumpos, C. C. et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design 13, 2722–2727 (2013).

152. Clinckemalie, L. et al. Challenges and Opportunities for CsPbBr3 Perovskites in Low- and High-Energy Radiation Detection. ACS Energy Letters 6, 1290–1314 (2021).

153. Li, X. et al. All-Inorganic CsPbBr3 Perovskite Solar Cells with 10.45% Efficiency by Evaporation-Assisted Deposition and Setting Intermediate Energy Levels. ACS Applied Materials & Interfaces 11, 29746–29752 (2019).

154. Gou, Z. et al. Self‐Powered X‐Ray Detector Based on All‐Inorganic Perovskite Thick Film with High Sensitivity Under Low Dose Rate. physica status solidi (RRL) – Rapid Research Letters 13, 1900094 (2019).

155. Pan, W. et al. Hot‐Pressed CsPbBr3 Quasi‐Monocrystalline Film for Sensitive Direct X‐ ray Detection. Advanced Materials 31, 1904405 (2019).

156. Matt, G. J. et al. Sensitive Direct Converting X‐Ray Detectors Utilizing Crystalline CsPbBr3 Perovskite Films Fabricated via Scalable Melt Processing. Advanced Materials Interfaces 7, 1901575 (2020).

157. Yin, L. et al. Controlled Cooling for Synthesis of Cs2AgBiBr6 Single Crystals and Its Application for X‐Ray Detection. Advanced Optical Materials 7, 1900491 (2019).

158. Steele, J. A. et al. Photophysical Pathways in Highly Sensitive Cs2AgBiBr6 Double- Perovskite Single-Crystal X-Ray Detectors. Advanced Materials 30, 1804450 (2018).

159. Zhang, H. et al. X-Ray Detector Based on All-Inorganic Lead-Free Cs2AgBiBr6 Perovskite Single Crystal. IEEE Transactions on Electron Devices 66, 2224–2229 (2019).

160. Yuan, W. et al. In Situ Regulating the Order–Disorder Phase Transition in Cs2AgBiBr6 Single Crystal toward the Application in an X‐Ray Detector. Advanced Functional Materials 29, 1900234 (2019).

161. Li, H. et al. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. Journal of Materials Chemistry C 6, 11961–11967 (2018).

162. Yang, B. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nature Communications 10, 1989 (2019).

163. Zhang, H. et al. Encapsulated X-Ray Detector Enabled by All-Inorganic Lead-Free Perovskite Film With High Sensitivity and Low Detection Limit. IEEE Transactions on Electron Devices 67, 3191–3198 (2020).

164. Kawaharamura, T. et al. Mist CVD Growth of ZnO-Based Thin Films and Nanostructures.Journal of the Korean Physical Society 53, 2976–2980 (2008).

165. Fujita, S. Mist deposition technology as a green route for thin film growth. Proceedings of AM-FPD 2014 - The 21st International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials 53–56 (2014) doi:10.1109/AM- FPD.2014.6867120.

166. Kim, B. H., Lee, J. Y., Choa, Y. H., Higuchi, M. & Mizutani, N. Preparation of TiO2 thin film by liquid sprayed mist CVD method. Materials Science and Engineering B: Solid- State Materials for Advanced Technology 107, 289–294 (2004).

167. Okuno, T., Oshima, T., Lee, S. D. & Fujita, S. Growth of SnO2 crystalline thin films by mist chemical vapour deposition method. Physica Status Solidi (C) Current Topics in Solid State Physics 8, 540–542 (2011).

168. Ikenoue, T. & Fujita, S. Thin Film Formation of Transparent Conductive Oxides by Solution-Based Mist Deposition Method toward Hybrid Device Applications. MRS Proceedings 1400, mrsf11-1400-s02-05 (2012).

169. Ikenoue, T., Kameyama, N. & Fujita, S. Fabrication of PEDOT:PSS/ZnMgO Schottky- type ultraviolet sensors on glass substrates with solution-based mist deposition technique and hard-mask patterning. physica status solidi (c) 8, 613–615 (2011).

170. Ikenoue, T., Sakamoto, S. & Inui, Y. Fabrication and characterization of Cu2O, ZnO and ITO thin films toward oxide thin film solar cell by mist chemical vapor deposition method. physica status solidi (c) 11, 1237–1239 (2014).

171. Ikenoue, T., Nishinaka, H. & Fujita, S. Fabrication of conducting poly(3,4- ethylenedioxythiophene): poly(styrenesulfonate) thin films by ultrasonic spray-assisted mist deposition method. Thin Solid Films 520, 1978–1981 (2012).

172. Lee, J.-H., Yoshikawa, S. & Sagawa, T. Fabrication of efficient organic and hybrid solar cells by fine channel mist spray coating. Solar Energy Materials and Solar Cells 127, 111– 121 (2014).

References for Chapter 2

1. Fujita, S. Mist deposition technology as a green route for thin film growth. Proceedings of AM-FPD 2014 - The 21st International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials 53–56 (2014) doi:10.1109/AM- FPD.2014.6867120.

2. Kim, B. H., Lee, J. Y., Choa, Y. H., Higuchi, M. & Mizutani, N. Preparation of TiO2 thin film by liquid sprayed mist CVD method. Materials Science and Engineering B: Solid- State Materials for Advanced Technology 107, 289–294 (2004).

3. Okuno, T., Oshima, T., Lee, S. D. & Fujita, S. Growth of SnO2 crystalline thin films by mist chemical vapour deposition method. Physica Status Solidi (C) Current Topics in Solid State Physics 8, 540–542 (2011).

4. Lee, J.-H., Yoshikawa, S. & Sagawa, T. Fabrication of efficient organic and hybrid solar cells by fine channel mist spray coating. Solar Energy Materials and Solar Cells 127, 111– 121 (2014).

5. Ikenoue, T., Nishinaka, H. & Fujita, S. Fabrication of conducting poly(3,4- ethylenedioxythiophene): poly(styrenesulfonate) thin films by ultrasonic spray-assisted mist deposition method. Thin Solid Films 520, 1978–1981 (2012).

6. Ikenoue, T. & Fujita, S. Thin Film Formation of Transparent Conductive Oxides by Solution-Based Mist Deposition Method toward Hybrid Device Applications. MRS Proceedings 1400, mrsf11-1400-s02-05 (2012).

7. Nishinaka, H. & Yoshimoto, M. Solution-based mist CVD technique for CH3NH3Pb(Br1- xClx)3 inorganic–organic perovskites. Japanese Journal of Applied Physics 55, 100308 (2016).

8. Ikenoue, T., Sakamoto, S. & Inui, Y. Fabrication and characterization of Cu2O, ZnO and ITO thin films toward oxide thin film solar cell by mist chemical vapor deposition method. physica status solidi (c) 11, 1237–1239 (2014).

9. Ikenoue, T., Kameyama, N. & Fujita, S. Fabrication of PEDOT:PSS/ZnMgO Schottky- type ultraviolet sensors on glass substrates with solution-based mist deposition technique and hard-mask patterning. physica status solidi (c) 8, 613–615 (2011).

10. Stoumpos, C. C. et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design 13, 2722–2727 (2013).

11. Kulbak, M., Cahen, D. & Hodes, G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. The Journal of Physical Chemistry Letters 6, 2452–2456 (2015).

12. Zhang, P. et al. Anisotropic Optoelectronic Properties of Melt-Grown Bulk CsPbBr3 Single Crystal. The Journal of Physical Chemistry Letters 9, 5040–5046 (2018).

13. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications 9, 1609 (2018).

14. Bube, R. H. Trap Density Determination by Space‐Charge‐Limited Currents. Journal of Applied Physics 33, 1733–1737 (1962).

15. Saidaminov, M. I. et al. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection. Advanced Optical Materials 5, 1600704 (2017).

16. Zhang, H. et al. Centimeter-Sized Inorganic Lead Halide Perovskite CsPbBr3 Crystals Grown by an Improved Solution Method. Crystal Growth & Design 17, 6426–6431 (2017).

17. Zeng, J. et al. Space-Confined Growth of CsPbBr3 Film Achieving Photodetectors with High Performance in All Figures of Merit. Advanced Functional Materials 28, 1804394 (2018).

18. Feng, J. et al. Crystallographically Aligned Perovskite Structures for High-Performance Polarization-Sensitive Photodetectors. Advanced Materials 29, 1605993 (2017).

19. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter- scale grains. Science 347, 522–525 (2015).

20. Song, J. et al. Ultralarge All-Inorganic Perovskite Bulk Single Crystal for High- Performance Visible-Infrared Dual-Modal Photodetectors. Advanced Optical Materials 5, 1700157 (2017).

References for Chapter 3

1. Kulbak, M., Cahen, D. & Hodes, G. How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. The Journal of Physical Chemistry Letters 6, 2452–2456 (2015).

2. Kulbak, M. et al. Cesium Enhances Long-Term Stability of Lead Bromide Perovskite- Based Solar Cells. The Journal of Physical Chemistry Letters 7, 167–172 (2016).

3. Ku, Z., Rong, Y., Xu, M., Liu, T. & Han, H. Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Scientific Reports 3, 3132 (2013).

4. Mei, A. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014).

5. Hu, Y. et al. Stable Large-Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency. Solar RRL 1, 2–7 (2017).

6. Liang, J. et al. All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society 138, 15829–15832 (2016).

7. Duan, J., Zhao, Y., He, B. & Tang, Q. High-Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. Angewandte Chemie International Edition 57, 3787–3791 (2018).

8. Liu, Z. et al. Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material. Nano-Micro Letters 10, 34 (2018).

9. Ding, J., Duan, J., Guo, C. & Tang, Q. Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering. Journal of Materials Chemistry A 6, 21999–22004 (2018).

10. Duan, J., Zhao, Y., Wang, Y., Yang, X. & Tang, Q. Hole‐Boosted Cu(Cr,M)O2 Nanocrystals for All‐Inorganic CsPbBr3 Perovskite Solar Cells. Angewandte Chemie International Edition 58, 16147–16151 (2019).

11. Duan, J., Wang, Y., Yang, X. & Tang, Q. Alkyl‐Chain‐Regulated Charge Transfer in Fluorescent Inorganic CsPbBr3 Perovskite Solar Cells. Angewandte Chemie International Edition 59, 4391–4395 (2020).

12. Zhou, Q., Duan, J., Yang, X., Duan, Y. & Tang, Q. Interfacial Strain Release from the WS2/CsPbBr3 van der Waals Heterostructure for 1.7 V Voltage All‐Inorganic Perovskite Solar Cells. Angewandte Chemie 132, 22181–22185 (2020).

13. Li, Y. et al. Lattice Modulation of Alkali Metal Cations Doped Cs1−xRxPbBr3 Halides for Inorganic Perovskite Solar Cells. Solar RRL 2, 1800164 (2018).

14. Yuan, H. et al. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. Journal of Materials Chemistry A 6, 24324–24329 (2018).

15. Tang, M. et al. Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chemical Engineering Journal 375, 121930 (2019).

16. Wang, Z. et al. Efficient and Stable Pure Green All-Inorganic Perovskite CsPbBr3 Light- Emitting Diodes with a Solution-Processed NiOx Interlayer. The Journal of Physical Chemistry C 121, 28132–28138 (2017).

17. Song, L. et al. Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr3 Films. Journal of Physical Chemistry Letters 8, 4148–4154 (2017).

18. Ren, Y. et al. Exploration of polymer-assisted crystallization kinetics in CsPbBr3 all- inorganic solar cell. Chemical Engineering Journal 392, 123805 (2020).

19. Dirin, D. N., Cherniukh, I., Yakunin, S., Shynkarenko, Y. & Kovalenko, M. V. Solution- Grown CsPbBr3 Perovskite Single Crystals for Photon Detection. Chemistry of Materials 28, 8470–8474 (2016).

20. Park, M. et al. Highly Reproducible Large-Area Perovskite Solar Cell Fabrication via Continuous Megasonic Spray Coating of CH3NH3PbI3. Small 15, 1804005 (2019).

21. Chen, H. et al. Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: Combining theories with practices. Journal of Power Sources 402, 82–90 (2018).

22. Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A 4, 17636–17642 (2016).

23. Stoumpos, C. C. et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3 : A New Material for High-Energy Radiation Detection. Crystal Growth & Design 13, 2722–2727 (2013).

24. Fu, K. et al. Influence of void-free perovskite capping layer on the charge recombination process in high performance CH3NH3PbI3 perovskite solar cells. Nanoscale 8, 4181–4193 (2016).

25. Haruta, Y., Ikenoue, T., Miyake, M. & Hirato, T. Fabrication of (101)-oriented CsPbBr3 thick films with high carrier mobility using a mist deposition method. Applied Physics Express 12, 085505 (2019).

26. Song, J. et al. Ultralarge All-Inorganic Perovskite Bulk Single Crystal for High- Performance Visible-Infrared Dual-Modal Photodetectors. Advanced Optical Materials 5, 1700157 (2017).

27. Chen, B., Yang, M., Priya, S. & Zhu, K. Origin of J – V Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 7, 905–917 (2016).

28. Duan, J., Hu, T., Zhao, Y., He, B. & Tang, Q. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy. Angewandte Chemie International Edition 57, 5746–5749 (2018).

29. Liu, X. et al. Novel antisolvent-washing strategy for highly efficient carbon-based planar CsPbBr3 perovskite solar cells. Journal of Power Sources 439, 227092 (2019).

30. Guo, H. et al. Doping with SnBr2 in CsPbBr3 to enhance the efficiency of all-inorganic perovskite solar cells. Journal of Materials Chemistry C 7, 11234–11243 (2019).

31. Zhao, Y., Duan, J., Wang, Y., Yang, X. & Tang, Q. Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V. Nano Energy 67, 104286 (2020).

32. Zhang, W. et al. Interface Engineering of Imidazolium Ionic Liquids toward Efficient and Stable CsPbBr3 Perovskite Solar Cells. ACS Applied Materials & Interfaces 12, 4540– 4548 (2020).

References for Chapter 4

1. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics 11, 315–321 (2017).

2. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

3. Fu, R. et al. Stability Challenges for Perovskite Solar Cells. ChemNanoMat 5, 253–265 (2019).

4. Stoumpos, C. C. et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection. Crystal Growth & Design 13, 2722–2727 (2013).

5. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nature Communications 9, 1609 (2018).

6. Gou, Z. et al. Self‐Powered X‐Ray Detector Based on All‐Inorganic Perovskite Thick Film with High Sensitivity Under Low Dose Rate. physica status solidi (RRL) – Rapid Research Letters 13, 1900094 (2019).

7. Pan, W. et al. Hot‐Pressed CsPbBr3 Quasi‐Monocrystalline Film for Sensitive Direct X‐ ray Detection. Advanced Materials 31, 1904405 (2019).

8. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites.Nature Photonics 9, 444–449 (2015).

9. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics 10, 333–339 (2016).

10. Basiricò, L. et al. Detection of X‐Rays by Solution‐Processed Cesium‐Containing Mixed Triple Cation Perovskite Thin Films. Advanced Functional Materials 29, 1902346 (2019).

11. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. Journal of Physics D: Applied Physics 33, 2853–2865 (2000).

References for Chapter 5

1. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics 11, 726–732 (2017).

2. Yin, L. et al. Controlled Cooling for Synthesis of Cs2AgBiBr6 Single Crystals and Its Application for X‐Ray Detection. Advanced Optical Materials 7, 1900491 (2019).

3. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. Journal of Physics D: Applied Physics 33, 2853–2865 (2000).

4. Steele, J. A. et al. Photophysical Pathways in Highly Sensitive Cs2AgBiBr6 Double- Perovskite Single-Crystal X-Ray Detectors. Advanced Materials 30, 1804450 (2018).

5. Zhang, H. et al. X-Ray Detector Based on All-Inorganic Lead-Free Cs2AgBiBr6 Perovskite Single Crystal. IEEE Transactions on Electron Devices 66, 2224–2229 (2019).

6. Yuan, W. et al. In Situ Regulating the Order–Disorder Phase Transition in Cs2AgBiBr6 Single Crystal toward the Application in an X‐Ray Detector. Advanced Functional Materials 29, 1900234 (2019).

7. Li, H. et al. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. Journal of Materials Chemistry C 6, 11961–11967 (2018).

8. Yang, B. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nature Communications 10, 1989 (2019).

9. Zhang, H. et al. Encapsulated X-Ray Detector Enabled by All-Inorganic Lead-Free Perovskite Film With High Sensitivity and Low Detection Limit. IEEE Transactions on Electron Devices 67, 3191–3198 (2020).

10. Zhang, Z. et al. Towards radiation detection using Cs2AgBiBr6 double perovskite single crystals. Materials Letters 269, 127667 (2020).

11. Zhang, W. et al. Growth and photodetection properties of Cs2AgBiBr6 crystals with large flat (111) plane grown from the solution by adding toluene. Journal of Crystal Growth 552, 125922 (2020).

12. Zuck, A., Schieber, M., Khakhan, O. & Burshtein, Z. Near single-crystal electrical properties of polycrystalline HgI2 produced by physical vapor deposition. in 2002 IEEE Nuclear Science Symposium Conference Record vol. 1 505–509 (IEEE, 2002).

13. Shih, C. T., Huang, T. J., Luo, Y. Z., Lan, S. M. & Chiu, K. C. Oriented polycrystalline α- HgI2 thick films grown by physical vapor deposition. Journal of Crystal Growth 280, 442– 447 (2005).

14. Cao, X. et al. Fabrication of Perovskite Films with Large Columnar Grains via Solvent- Mediated Ostwald Ripening for Efficient Inverted Perovskite Solar Cells. ACS Applied Energy Materials 1, 868–875 (2018).

15. Eggers, H. et al. Inkjet‐Printed Micrometer‐Thick Perovskite Solar Cells with Large Columnar Grains. Advanced Energy Materials 10, 1903184 (2020).

16. Chern, Y.-C. et al. Grain structure control and greatly enhanced carrier transport by CH3NH3PbCl3 interlayer in two-step solution processed planar perovskite solar cells. Organic Electronics 38, 362–369 (2016).

17. Zhao, Y. et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature Communications 9, 1607 (2018).

18. Haruta, Y., Ikenoue, T., Miyake, M. & Hirato, T. Fabrication of (101)-oriented CsPbBr3 thick films with high carrier mobility using a mist deposition method. Applied Physics Express 12, 085505 (2019).

19. Haruta, Y., Ikenoue, T., Miyake, M. & Hirato, T. Fabrication of CsPbBr3 Thick Films by Using a Mist Deposition Method for Highly Sensitive X-ray Detection. MRS Advances 5, 395–401 (2020).

20. Gao, W. et al. High‐Quality Cs2AgBiBr6 Double Perovskite Film for Lead‐Free Inverted Planar Heterojunction Solar Cells with 2.2 % Efficiency. ChemPhysChem 19, 1696–1700 (2018).

21. Haruta, Y., Ikenoue, T., Miyake, M. & Hirato, T. One-Step Coating of Full-Coverage CsPbBr3 Thin Films via Mist Deposition for All-Inorganic Perovskite Solar Cells. ACS Applied Energy Materials 3, 11523–11528 (2020).

22. Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. Journal of the American Chemical Society 138, 2138–2141 (2016).

23. Rocks, C., Svrcek, V., Maguire, P. & Mariotti, D. Understanding surface chemistry during MAPbI3 spray deposition and its effect on photovoltaic performance. Journal of Materials Chemistry C 5, 902–916 (2017).

24. Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A 4, 17636–17642 (2016).

25. Liang, Z. et al. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Advances 5, 60562–60569 (2015).

26. Jaffe, A. et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Central Science 2, 201– 209 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る