リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Imaging slabs in the Earth’s mantle transition zone and D″ layer beneath Central America and its vicinity using waveform inversion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Imaging slabs in the Earth’s mantle transition zone and D″ layer beneath Central America and its vicinity using waveform inversion

Borgeaud, Dit-Avocat Anselme Francois Emile 東京大学 DOI:10.15083/0002001943

2021.10.04

概要

The mantle transition zone (MTZ; between ~410–660 km depth) and the D″ region (from the coremantle boundary to ~400 km above it), the two boundary layers in the Earth’s mantle, play a major role in governing the modality of convection in the mantle. Previous work using travel-time tomography reported large variability of convection modality of slabs in and near the MTZ. Also, the length scale of velocity anomalies in the D″ region, and thus of convection if a thermal origin is assumed, is still being debated. In order to improve our understanding of how slabs interact with the 660 km discontinuity and the thermal boundary layer in the D″ region, I use waveform inversion to image the detailed 3-D S-velocity structure in the D″ region and MTZ beneath Central America and vicinity. The region beneath Central America is of particular geodynamical interest, since the paleo- and present Pacific plates have been subducting beneath the western margin of Pangaea since ~250 Ma, which implies that paleoslabs could have reached the lowermost mantle and are still present in the MTZ. I obtain high-resolution images because of the dense sampling by seismic waves due to the full deployment of the USArray broadband seismic stations in the conterminous US during 2004–2015. In the D″ region, I find evidence for two distinct paleoslabs possibly corresponding to the Farallon slab, and remnants from intra-oceanic subduction, and for chemically distinct denser material just above the core-mantle boundary. In the transition zone, I find complex subduction modality of the Cocos slab, possibly due to the thermal structure of the Cocos slab, and its interaction with a lower-mantle plume, suggesting the importance of properties of the slab itself on the convection modality in and near the MTZ, and of the current state of convection in the lower-mantle. This work favors whole mantle convection (at least in the study region) with slabs sinking to the CMB possibly creating iron-rich heterogeneities by chemical differentiation, and triggering upwelling flow of hot material that could in turn interact with younger slabs in the MTZ.

この論文で使われている画像

参考文献

Akaike, H. (1977). An extension of the method of maximum likelihood and the stein’s problem.

Annals of the Insitute of Statistical Mathematics, 29, 153–164.

Amaru, M. L. (2007). Global travel time tomography with 3-D reference models. Geologica Ultraiectina (Vol. 274).

Ballmer, M. D., Schmerr, N. C., Nakagawa, T., & Ritsema, J. (2015). Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Science Advances, 1(11). https://doi.org/10.1126/sciadv.1500815

Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M., & Hirose, K. (2017). Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nature Geoscience, 10, 236–241. https://doi.org/10.1038/NGEO2898 Van Benthem, S., Govers, R., Spakman, W., & Wortel, R. (2013). Tectonic evolution and mantle structure of the Caribbean. Journal of Geophysical Research: Solid Earth, 118(6), 3019–3036. https://doi.org/10.1002/jgrb.50235

Borgeaud, A. F. E., Konishi, K., Kawai, K., & Geller, R. J. (2016). Finite frequency effects on apparent S-wave splitting in the D" layer: comparison between ray theory and full-wave synthetics. Geophysical Journal International, 207(1), 12–28. https://doi.org/10.1093/gji/ggw254

Borgeaud, A. F. E., Kawai, K., Konishi, K., & Geller, R. J. (2017). Imaging paleoslabs in the D" layer beneath Central America and the Caribbean using seismic waveform inversion. Science Advances, 3(11). https://doi.org/10.1126/sciadv.1602700

Bozdag, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., et al. (2016). Global adjoint tomography : first-generation model. Geophysical Journal International, 207, 1739–1766. https://doi.org/10.1093/gji/ggw356

Bullen, B. (1963). Introduction to the theory of Seismology. New York: Cambridge University Press.

Bunge, H., & Grand, S. P. (2000). Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature, 405, 337–340.

Bunge, H., Richards, M. A., Lithgow-bertelloni, C., Baumgardner, J. R., Grand, S. P., & Romanowicz, B. A. (1998). Time Scales and Heterogeneous Structure in Geodynamic Earth Models. Science, 280(5360), 91–95. https://doi.org/DOI: 10.1126/science.280.5360.91

Burdick, S., Vernon, F. L., Martynov, V., Eakins, J., Cox, T., Tytell, J., et al. (2016). Model Update May 2016 : Upper-Mantle Heterogeneity beneath North America from TravelTime Tomography with Global and USArray Data. Seismological Research Letters, 88(2A), 319–325. https://doi.org/10.1785/0220160186

Burkett, E. R., & Billen, M. I. (2010). Three-dimensionality of slab detachment due to ridgetrench collision: Laterally simultaneous boudinage versus tear propagation. Geochemistry, Geophysics, Geosystems, 11(11). https://doi.org/10.1029/2010GC003286

Capitanio, F. A., Morra, G., & Goes, S. (2007). Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth and Planetary Science Letters, 262(1–2), 284–297. https://doi.org/10.1016/j.epsl.2007.07.039

Chen, M., Niu, F., Liu, Q., Tromp, J., & Zheng, X. (2015). Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons. Journal of Geophysical Research: Solid Earth, 120, 1762–1786. https://doi.org/10.1002/2014JB011638.Received

Chen, P., Jordan, T. H., & Zhao, L. (2007). Full three-dimensional tomography: A comparison between the scattering-integral and adjoint-wavefield methods. Geophysical Journal International, 170(1), 175–181. https://doi.org/10.1111/j.1365-246X.2007.03429.x

Christensen, U. R. (1996). The influence of trench migration on slab penetration into the lower mantle. Earth and Planetary Science Letters, 140(1–4), 27–39.

Christensen, U. R., & Yuen, D. A. (1985). Layered convection induced by phase transitions. Journal of Geophysical Research: Solid Earth, 90(B12), 10291–10300. https://doi.org/10.1029/JB090iB12p10291

Cobden, L., & Thomas, C. (2013). The origin of D" reflections: a systematic study of seismic array data sets. Geophysical Journal International, 194(2), 1091–1118. https://doi.org/10.1093/gji/ggt152

Colombi, A., Nissen-meyer, T., Boschi, L., & Giardini, D. (2014). Seismic waveform inversion for core–mantle boundary topography. Geophysical Journal International, 198, 55–71. https://doi.org/10.1093/gji/ggu112

Cottaar, S., Heister, T., Rose, I., & Unterborn, C. (2014). BurnMan: A lower mantle mineral physics toolkit. Geochemistry, Geophysics, Geosystems, 15(4), 1164–1179. https://doi.org/10.4088/JCP.11m07343

Couch, R., & Woodcock, S. (1981). Gravity and structure of the continental margins of southwestern Mexico and northwestern Guatemala. Journal of Geophysical Research: Solid Earth, 86(B3), 1829–1840. https://doi.org/10.1029/JB086iB03p01829

Creager, K. C., & Jordan, T. H. (1984). Slab penetration into the lower mantle. Journal of Geophysical Research: Solid Earth, 89(B5), 3031–3049. https://doi.org/doi.org/10.1029/JB089iB05p03031

Creager, K. C., & Jordan, T. H. (1986). Slab penetration into the lower mantle beneath the Mariana and other island arcs of the northwest Pacific. Journal of Geophysical Research: Solid Earth, 91(B3), 3573–3589. https://doi.org/10.1029/JB091iB03p03573

Crotwell, H. P., Owens, T. J., & Ritsema, J. (1999). The TauP Toolkit: flexible seismic traveltime and ray-path utilities. Seismological Research Letters, 70(2), 154–160. https://doi.org/https://doi.org/10.1785/gssrl.70.2.154

Dahlen, F. A. (2005). Finite-frequency sensitivity kernels for boundary topography perturbations. Geophysical Journal International, 162(1), 525–540. https://doi.org/10.1111/j.1365-246X.2005.02682.x

Dahlen, F. A., Hung, S., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes— I. Theory. Geophysical Journal International, 141(1), 157–174. https://doi.org/10.1007/978-3-319-06540-3

Davies, D. R., Goes, S., Davies, J. H., Schuberth, B. S. A., Bunge, H., & Ritsema, J. (2012). Reconciling dynamic and seismic models of Earth’s lower mantle : The dominant role of thermal heterogeneity. Earth and Planetary Science Letters, 253–269, 353–354. https://doi.org/10.1016/j.epsl.2012.08.016

Deschamps, F., Rogister, Y., & Tackley, P. J. (2018). Constraints on core-mantle boundary topography from models of thermal and thermochemical convection. Geophysical Journal International, 212(1), 164–188. https://doi.org/10.1093/gji/ggx402

Domeier, M., Doubrovine, P. V, Torsvik, T. H., Spakman, W., & Bull, A. L. (2016). Global correlation of lower mantle structure and past subduction. Geophysical Research Letters, 43(10), 4645–4953. https://doi.org/https://doi.org/10.1002/2016GL068827

Durand, S., Thomas, C., & Jackson, J. M. (2018). Constraints on D" beneath the North Atlantic region from P and S travel times and amplitudes. Geophysical Journal International,216(2), 1132–1144. https://doi.org/10.1093/gji/ggy476

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297–356. https://doi.org/10.1016/0031- 9201(81)90046-7

Dziewonski, A. M., Hager, B. H., & O’Connell, R. J. (1977). Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research, 82(2), 239–255. https://doi.org/10.1029/JB082i002p00239

Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004 – 2010 : Centroid-moment tensors for 13,1017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Engdahl, E. R., van der Hilst, R. D., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), 722–743. https://doi.org/10.1130/0-8137- 2349-3.461

Engebretson, D. C., Kelley, K. P., Cashman, H. J., & Richards, M. A. (1992). 180 million years of subduction. GSA Today.

Fei, Y., Li, J., Hirose, K., Minarik, W., Van Orman, J., Sanloup, C., et al. (2004). A critical evaluation of pressure scale at high temperatures by in situ X-ray diffraction measurements. Physics of the Earth and Planetary Interiors, 143–144, 515–526. https://doi.org/10.1016/j.pepi.2003.09.018

Ferrari, L. (2004). Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology, 32(1), 77–80. https://doi.org/10.1130/G19887.1

Fichtner, A., Kennett, B. L. N., Igel, H., & Bunge, H. (2008). Theoretical background for continental- and global-scale full-waveform inversion in the time–frequency domain. Geophysical Journal International, 175(2), 665–685. https://doi.org/10.1111/j.1365- 246X.2008.03923.x

Forte, A. M., & Mitrovica, J. X. (2001). Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410, 1049–1056.

French, S. W., & Romanowicz, B. A. (2014). Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophysical Journal International, 199(3), 1303–1327. https://doi.org/10.1093/gji/ggu334

French, S. W., & Romanowicz, B. A. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525, 95–99. https://doi.org/10.1038/nature14876

Frost, D. A., & Rost, S. (2014). The P-wave boundary of the Large-Low Shear Velocity Province beneath the Pacific. Earth and Planetary Science Letters, 403, 380–392. https://doi.org/10.1016/j.epsl.2014.06.046

Fuji, N., Kawai, K., & Geller, R. J. (2010). A methodology for inversion of broadband seismic waveforms for elastic and anelastic structure and its application to the mantle transition zone beneath the Northwestern Pacific. Physics of the Earth and Planetary Interiors, 180(3–4), 118–137. https://doi.org/10.1016/j.pepi.2009.10.004

Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118, 5920–5938. https://doi.org/10.1002/2013JB010466

Fukao, Y., Obayashi, M., Inoue, H., & Nenbai, M. (1992). Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research: Solid Earth, 97(B4), 4809–4822. https://doi.org/10.1029/91JB02749

Fukao, Y., Widiyantoro, S., & Obayashi, M. (2001). Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3), 291–323. https://doi.org/https://doi.org/10.1029/1999RG000068

Gao, W., Matzel, E., & Grand, S. P. (2006). Upper mantle seismic structure beneath eastern Mexico determined from P and S waveform inversion and its implications. Journal of Geophysical Research: Solid Earth, 111(B08307), 1–23. https://doi.org/10.1029/2006JB004304

Garnero, E. J., & McNamara, A. K. (2008). Structure and Dynamics of Earth’s Lower Mantle. Science, 320(5876), 626–628. https://doi.org/10.1126/science.1148028

Garnero, E. J., Mcnamara, A. K., & Shim, S. (2016). Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nature Geoscience, 9, 481–489. https://doi.org/10.1038/ngeo2733

Geller, R. J., & Hara, T. (1993). Two efficient algorithms for iterative linearized inversion of seismic waveform data. Geophysical Journal International, 115(3), 699–710. https://doi.org/10.1111/j.1365-246X.1993.tb01488.x

Goes, S., Capitanio, F. A., & Morra, G. (2008). Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451, 981–984. https://doi.org/10.1038/nature06691

Gorbatov, A., & Fukao, Y. (2005). Tomographic search for missing link between the ancient Farallon subduction and the present Cocos subduction. Geophysical Journal International, 160(3), 849–854. https://doi.org/10.1111/j.1365-246X.2005.02507.x

Grand, S. P. (1987). Tomographic Inversion for Shear Velocity Beneath the North American Plate. Journal of Geophysical Research: Solid Earth, 92(B13), 14065–14090. https://doi.org/198710.1029/JB092iB13p14065

Grand, S. P. (1994). Mantle shear structure beneath the Americas and surrounding oceans. Journal of Geophysical Research: Solid Earth, 99(B6), 11591–11621. https://doi.org/10.1029/94JB00042

Grand, S. P. (2002). Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London A, 360(1800), 2475–2491. https://doi.org/doi: 10.1098/rsta.2002.1077

Grand, S. P., van der Hilst, R. D., & Widiyantoro, S. (1997). Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4), 1–7. https://doi.org/10.1130/GSAT01707GW.1

Gréaux, S., Irifune, T., Higo, Y., Tange, Y., Arimoto, T., Liu, Z., & Yamada, A. (2019). Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature, 565(7738), 218–221. https://doi.org/10.1038/s41586-018-0816-5

Griffiths, R. W., Hackney, R. I., & van der Hilst, R. D. (1995). A laboratory investigation of effects of trench migration on the descent of subducted slabs. Earth and Planetary Science Letters, 133(1–2), 1–17.

Hager, B. H. (1984). Subducted slabs and the geoid: Constraints on mantle rheology and flow. Journal of Geophysical Research: Solid Earth, 89(B7), 6003–6015. https://doi.org/10.1029/JB089iB07p06003 van der Hilst, R. D., & Engdahl, E. R. (1991). On ISC PP and pP data and their use in delaytime tomography of the Caribbean region. Geophysical Journal International, 106(1), 169–188. https://doi.org/10.1111/j.1365-246X.1991.tb04610.x van der Hilst, R. D., Widiyantoro, S., & Engdahl, E. R. (1997). Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584. https://doi.org/10.1038/386578a0

Hirose, K., Sinmyo, R., & Hernlund, J. (2017). Perovskite in Earth’s deep interior. Science, 358(6364), 734–738. https://doi.org/10.1126/science.aam8561

Honda, S. (2017). Geodynamic modeling of the subduction zone around the Japanese Islands. Monographs on Environment, Earth and Planets, 5(2), 35–62. https://doi.org/10.5047/meep.2017.00502.0035

Hung, S., Dahlen, F. A., & Nolet, G. (2000). Fréchet kernels for finite-frequency traveltimes— II. Examples. Geophysical Journal International, 141(1), 175–203. https://doi.org/10.1007/978-3-319-06540-3

Hung, S., Garnero, E. J., Chiao, L., Kuo, B., & Lay, T. (2005). Finite frequency tomography of D" shear velocity heterogeneity beneath the Caribbean. Journal of Geophysical Research: Solid Earth, 110(B7), 1–20. https://doi.org/10.1029/2004JB003373

Hutko, A. R., Lay, T., Garnero, E. J., & Revenaugh, J. (2006). Seismic detection of folded, subducted lithosphere at the core-mantle boundary. Nature, 441, 333–336. https://doi.org/10.1038/nature04757

Hutko, A. R., Lay, T., Revenaugh, J., & Garnero, E. J. (2008). Anticorrelated seismic velocity anomalies from post-pervoskite in the lowermost mantle. Science, 320(5879), 1070–1074. https://doi.org/10.1029/2007JF000831

Iidaka, T., & Furukawa, Y. (1994). Double seismic zone for deep earthquakes in the Izu-Bonin subduction zone. Science, 263(5150), 1116–1118. https://doi.org/10.1126/science.263.5150.1116

Inoue, H., Fukao, Y., Tanabe, K., & Ogata, Y. (1990). Whole mantle P-wave travel time tomography. Physics of the Earth and Planetary Interiors, 59(4), 294–328. https://doi.org/10.1016/0031-9201(90)90236-Q

Irifune, T. (1993). Phase transformations in the earth’s mantle and subducting slabs: Implications for their compositions, seismic velocity and density structures and dynamics.

Island Arc, 2(2), 55–71. https://doi.org/10.1111/j.1440-1738.1993.tb00074.x Johnston, S. T., & Borel, G. D. (2007). The odyssey of the Cache Creek terrane, Canadian Cordillera: Implications for accretionary orogens, tectonic setting of Panthalassa, the Pacific superwell, and break-up of Pangea. Earth and Planetary Science Letters, 253(3–4), 415–428. https://doi.org/10.1016/j.epsl.2006.11.002

Jordan, T. H. (1977). Lithospheric slab penetration into the lower mantle beneath the sea of Okhotsk. Journal of Geophysical Research, 43, 473–496.

Kaneshima, S. (2016). Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105–114. https://doi.org/10.1016/j.pepi.2017.09.007

Kaneshima, S., & Helffrich, G. (2010). Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area. Physics of the Earth and Planetary Interiors, 183(1–2), 91–103. https://doi.org/10.1016/j.pepi.2010.03.011

Karato, S.-I., Riedel, M. R., & Yuen, D. A. (2001). Rheological structure and deformation of subducted slabs in the mantle transition zone: Implications for mantle circulation and deep earthquakes. Physics of the Earth and Planetary Interiors, 127(1–4), 83–108. https://doi.org/10.1016/S0031-9201(01)00223-0

Karato, S. (1993). Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters, 20(15), 1623–1626. https://doi.org/10.1029/93GL01767

Karato, S., & Karki, B. B. (2001). Origin of lateral variation of seismic wave velocities and density in the deep mantle. Journal of Geophysical Research: Solid Earth, 106(B10), 21771–21783. https://doi.org/10.1029/2001JB000214

Kawai, K., & Tsuchiya, T. (2009). Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22119–22123. https://doi.org/10.1073/pnas.0905920106

Kawai, K., & Tsuchiya, T. (2015). Elasticity of Continental Crust Around the Mantle Transition Zone. https://doi.org/10.1007/978-3-319-15627-9

Kawai, K., Takeuchi, N., & Geller, R. J. (2006). Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media. Geophysical Journal International, 164(2), 411–424. https://doi.org/10.1111/j.1365-246X.2005.02829.x

Kawai, K., Takeuchi, N., Geller, R. J., & Fuji, N. (2007). Possible evidence for a double crossing phase transition in D″ beneath Central America from inversion of seismic waveforms. Geophysical Research Letters, 34(9). https://doi.org/10.1029/2007GL029642

Kawai, K., Konishi, K., Geller, R. J., & Fuji, N. (2014). Methods for inversion of body-wave waveforms for localized three-dimensional seismic structure and an application to D" structure beneath Central America. Geophysical Journal International, 197(1), 495–524. https://doi.org/10.1093/gji/ggt520

Kawakatsu, H., & Niu, F. (1994). Seismic evidence for a 920-km discontinuity in the mantle. Nature, 371, 301–305. https://doi.org/10.1038/371301a0

Kendall, J.-M., & Nangini, C. (1996). Lateral variations in D″ below the Caribbean. Geophysical Research Letters, 23(4), 399–402. https://doi.org/10.1029/95GL02659

Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Kennett, B. L. N., Widiyantoro, S., & van der Hilst, R. D. (1998). Joint seismic tomography for bulk sound and shear wave speed in the Earth’s mantle. Journal of Geophysical Research, 103(B6), 12469–12493. https://doi.org/10.1029/98JB00150

King, S. D., Frost, D. J., & Rubie, D. C. (2015). Why cold slabs stagnate in the transition zone. Geology, 43(3), 231–234. https://doi.org/10.1130/G36320.1

Kito, T., Thomas, C., Rietbrock, A., Garnero, E. J., Nippress, S. E. J., & Heath, A. E. (2008). Seismic evidence for a sharp lithospheric base persisting to the lowermost mantle beneath the Caribbean. Geophysical Journal International, 174(3), 1019–1028. https://doi.org/10.1111/j.1365-246X.2008.03880.x

Koelemeijer, P., Schuberth, B. S. A., Davies, D. R., Deuss, A., & Ritsema, J. (2018). Constraints on the presence of post-perovskite in Earth’s lowermost mantle from tomographic-geodynamic model comparisons. Earth and Planetary Science Letters, 494, 226–238. https://doi.org/10.1016/j.epsl.2018.04.056

Komatitsch, D., Vilotte, J. P., Tromp, J., Afanasiev, M., Bozda, E., Charles, J., et al. (2015). SPECFEM3D Globe v7.0.0 [software], Computational Infrastructure for Geodynamics.

Konishi, K., Kawai, K., Geller, R. J., & Fuji, N. (2009). MORB in the lowermost mantle beneath the western Pacific : Evidence from waveform inversion. Earth and Planetary Science Letters, 278(3–4), 219–225. https://doi.org/10.1016/j.epsl.2008.12.002

Konishi, K., Kawai, K., Geller, R. J., & Fuji, N. (2014). Waveform inversion for localized three-dimensional seismic velocity structure in the lowermost mantle beneath the Western Pacific. Geophysical Journal International, 199(2), 1245–1267. https://doi.org/10.1093/gji/ggu288

Labrosse, S., Hernlund, J. W., & Coltice, N. (2007). A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450(7171), 866–869. https://doi.org/10.1038/nature06355

Lay, T., & Garnero, E. J. (2011). Deep Mantle Seismic Modeling and Imaging. Annual Review of Earth and Planetary Sciences, 39(1), 91–123. https://doi.org/10.1146/annurev-earth040610-133354

Leat, P. T., & Larter, R. D. (2003). Intra-oceanic subduction systems: introduction. Geological Society, London, Special Publications, 219, 1–17. https://doi.org/10.1016/j.jfda.2014.01.026 van der Lee, S., & Nolet, G. (1997a). Seismic image of the subducted trailing fragments of the Farallon plate. Nature, 386, 266–269. https://doi.org/10.1038/386266a0 van der Lee, S., & Nolet, G. (1997b). Upper mantle S velocity structure of North America. Journal of Geophysical Research: Solid Earth, 102(B10), 22815–22838. https://doi.org/10.1029/97JB01168 van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M., & Mora, A. (2016). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31, 271–294. https://doi.org/10.1016/j.gr.2015.01.011

Li, C., Van Der Hilst, R. D., Engdahl, E. R., & Burdick, S. (2008). A new global model for P wave speed variations in Earth’s mantle. Geochemistry, Geophysics, Geosystems, 9(5). https://doi.org/10.1029/2007GC001806

Li, X.-D., & Romanowicz, B. A. (1995). Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophysical Journal International, 121(3), 695–709. https://doi.org/10.1111/j.1365-246X.1995.tb06432.x

Manea, M., Manea, V. C., Ferrari, L., Kostoglodov, V., & Bandy, W. L. (2005). Tectonic evolution of the Tehuantepec Ridge. Earth and Planetary Science Letters, 238(1–2), 64–77. https://doi.org/10.1016/j.epsl.2005.06.060

Maruyama, S., Santosh, M., & Zhao, D. (2007). Superplume, supercontinent, and postperovskite: Mantle dynamics and anti-plate tectonics on the Core-Mantle Boundary. Gondwana Research, 11(1–2), 7–37. https://doi.org/10.1016/j.gr.2006.06.003

Masters, G., Laske, G., Bolton, H., & Dziewonski, A. M. (2000). The relative behavior of shear velocity, bluk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. Geophysical Monograph, 117, 63–87. https://doi.org/https://doi.org/10.1029/GM117p0063 van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L., & Torsvik, T. H. (2010). Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geoscience, 3(1), 36–40. https://doi.org/10.1038/ngeo708 van der Meer, D. G., van Hinsbergen, D. J. J., & Spakman, W. (2018). Atlas of the underworld: Slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723, 309–448. https://doi.org/10.1016/j.tecto.2017.10.004

Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., et al. (2016). Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44(1), 107–138. https://doi.org/10.1146/annurev-earth-060115-012211

Mulyukova, E., Steinberger, B., Dabrowski, M., & Sobolev, S. V. (2015). Survival of LLSVPs for billions of years in a vigorously convecting mantle : Replenishment and destruction of chemical anomaly. Journal of Geophysical Research: Solid Earth, 120(5), 3824–3847. https://doi.org/10.1002/2014JB011688.We

Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Yasuo, O. (2004). Post-Perovskite Phase Transition in MgSi03. Science, 304(5672), 855–858. https://doi.org/DOI: 10.1126/science.1095932

Nakagawa, T., & Tackley, P. J. (2015). Influence of plate tectonic mode on the coupled thermochemical evolution of Earth’s mantle and core. Geochemistry, Geophysics, Geosystems, 16(10), 3400–3413. https://doi.org/10.1002/2015GC005996.Received

Nolet, G. (1990). Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. Journal of Geophysical Research: Solid Earth, 95(B6), 8499–8512. https://doi.org/10.1029/JB095iB06p08499

Nolet, G., & Dahlen, F. A. (2000). Wave front healing and the evolution of seismic delay times. Journal of Geophysical Research: Solid Earth, 105(B8), 19043–19054. https://doi.org/https://doi.org/10.1029/2000JB900161

Obayashi, M., Yoshimitsu, J., Nolet, G., Fukao, Y., Shiobara, H., Sugioka, H., et al. (2013). Finite frequency whole mantle P wave tomography: Improvement of subducted slab images. Geophysical Research Letters, 40(21), 5652–5657. https://doi.org/10.1002/2013GL057401

Pardo, M., & Suárez, G. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. Journal of Geophysical Research: Solid Earth, 100(B7), 12357–12373. https://doi.org/10.1029/95JB00919

Quinteros, J., Sobolev, S. V., & Popov, A. A. (2010). Viscosity in transition zone and lower mantle: Implications for slab penetration. Geophysical Research Letters, 37(9). https://doi.org/10.1029/2010GL043140

Rawlinson, N., & Spakman, W. (2016). On the use of sensitivity tests in seismic tomography. Geophysical Journal International, 205(2), 1221–1243. https://doi.org/10.1093/gji/ggw084

Ren, Y., Stutzmann, E., van der Hilst, R. D., & Besse, J. (2007). Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. Journal of Geophysical Research: Solid Earth, 112(B1). https://doi.org/10.1029/2005JB004154

Richards, M. A., & Engebretson, D. C. (1992). Large-scale mantle convection and the history of subduction. Nature, 355, 437–440. https://doi.org/10.1038/350055a0

Ringwood, A. E. (1989). Significance of the terrestrial Mg/Si ratio. Earth and Planetary Science Letters, 95(1–2), 1–7. https://doi.org/10.1016/0012-821X(89)90162-3

Ringwood, A. E., & Irifune, T. (1988). Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature, 331, 131–136. https://doi.org/10.1038/332141a0

Ritsema, J., Deuss, A., Van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3), 1223–1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x

Rogers, J. J. W., & Santosh, M. (2004). Continents and Supercontinents (Oxford Uni). New York.

Rogers, R. D., Karason, H., & van der Hilst, R. D. (2002). Epeirogenic uplift above a detached slab in northern Central America. Geology, 30(11), 1031–1034. https://doi.org/10.1130/0091-7613(2002)030<1031:EUAADS>2.0.CO;2

Romanowicz, B. A. (1991). Seismic tomography of the Earth’s mantle. Annual Review of Earth and Planetary Sciences, 19, 77–99. https://doi.org/10.1146/annurev.ea.19.050191.000453

Romanowicz, B. A. (2003). Global mantle tomography: Progess status in the past 10 years. Annual Review of Earth and Planetary Sciences, 31(1), 303–328. https://doi.org/10.1146/annurev.earth.31.091602.113555

Schuberth, B. S. A., & Bunge, H. P. (2009). Tomographic filtering of high-resolution mantle circulation models: Can seismic heterogeneity be explained by temperature alone? Geochemistry, Geophysics, Geosystems, 10(5). https://doi.org/10.1029/2009GC002401

Sdrolias, M., & Müller, R. D. (2006). Controls on back-arc basin formation. Geochemistry, Geophysics, Geosystems, 7(4). https://doi.org/10.1029/2005GC001090

Seno, T., & Maruyama, S. (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonics, 102(1–4), 53–84. https://doi.org/10.1016/0040-1951(84)90008-8

Shephard, G. E., Matthews, K. J., Hosseini, K., & Domeier, M. (2017). On the consistency of seismically imaged lower mantle slabs. Scientific Reports, 7(10976). https://doi.org/10.1038/s41598-017-11039-w

Sidorin, I. (1999). Evidence for a Ubiquitous Seismic Discontinuity at the Base of the Mantle.

Science, 286(5443), 1326–1331. https://doi.org/10.1126/science.286.5443.1326

Sigloch, K. (2011). Mantle provinces under North America from multifrequency P wave tomography. Geochemistry, Geophysics, Geosystems, 12(2). https://doi.org/10.1029/2010GC003421 Sigloch, K., & Mihalynuk, M. G. (2013). Intra-oceanic subduction shaped the assembly of Cordilleran North America. Nature, 496(7443), 50–56. https://doi.org/10.1038/nature12019

Simmons, N. A., Myers, S. C., Johannesson, G., Matzel, E., & Grand, S. P. (2015). Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean. Geophysical Research Letters, 42(21), 9270–9278. https://doi.org/doi:10.1002/2015GL066237

Song, T. R. A., Helmberger, D. V., & Grand, S. P. (2004). Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature, 427(6974), 530–533. https://doi.org/10.1038/nature02231

Stevenson, D. J. (1981). Models of the Earth’s Core. Science, 214(4521), 611–619. https://doi.org/10.1126/science.214.4521.611

Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., & Fumagalli, P. (2007). Phase stability and shear softening in CaSi O3 perovskite at high pressure. Physical Review B - Condensed Matter and Materials Physics, 75(2). https://doi.org/10.1103/PhysRevB.75.024108

Su, W., Woodward, R. L., & Dziewonski, A. M. (1994). Degree 12 model of shear velocity heterogeneity in the mantle. Journal of Geophysical Research: Solid Earth, 99(B4), 6945–6980. https://doi.org/10.1029/93JB03408

Suzuki, Y., Kawai, K., Geller, R. J., Borgeaud, A. F. E., & Konishi, K. (2016). Waveform inversion for 3-D S-velocity structure of D" beneath the Northern Pacific: Possible evidence for a remnant slab and a passive plume. Earth, Planets and Space, 68(1). https://doi.org/10.1186/s40623-016-0576-0

Tackley, P. J. (2011). Living dead slabs in 3-D: The dynamics of compositionally-stratified slabs entering a “slab graveyard” above the core-mantle boundary. Physics of the Earth and Planetary Interiors, 188(3–4), 150–162. https://doi.org/10.1016/j.pepi.2011.04.013

Takeuchi, N. (2007). Whole mantle SH velocity model constrained by waveform inversion based on three-dimensional Born kernels. Geophysical Journal International, 169(3), 1153–1163. https://doi.org/10.1111/j.1365-246X.2007.03405.x

Takeuchi, N., Kawakatsu, H., Tanaka, S., Obayashi, M., Chen, Y. J., Ning, J., et al. (2014). Upper mantle tomography in the northwestern Pacific region using triplicated P waves. Journal of Geophysical Research: Solid Earth, 119(10), 7667–7685. https://doi.org/10.1002/2014JB011161

Tao, K., Grand, S. P., & Niu, F. (2017). Full-waveform inversion of triplicated data using a normalized-correlation-coefficient-based misfit function. Geophysical Journal International, 210(3), 1517–1524. https://doi.org/10.1093/gji/ggx249

Tao, K., Grand, S. P., & Niu, F. (2018). Seismic structure of the upper mantle beneath eastern Asia from full waveform seismic tomography. Geochemistry, Geophysics, Geosystems, 19(8), 2732–2763. https://doi.org/10.1029/2018GC007460

Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics and Space Physics, 20(2), 219–232. https://doi.org/10.1029/RG020i002p00219

Tateno, S., Hirose, K., & Ohishi, Y. (2014). Melting experiments on peridotite to lowermost mantle conditions. Journal of Geophysical Research: Solid Earth, 119, 4684–4694. https://doi.org/10.1002/2014JB011176.Received

Thomas, C., Kendall, J.-M., & Lowman, J. (2004). Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth and Planetary Science Letters, 225(1–2), 105–113. https://doi.org/10.1016/j.epsl.2004.05.038

Thurber, C. H., & Aki, K. (1987). Three-dimensional seismic imaging. Annual Review of Earth and Planetary Sciences, 15, 115–139.

Tkalčić, H., Young, M., Muir, J. B., Davies, D. R., & Mattesini, M. (2015). Strong, multi-scale heterogeneity in Earth’s lowermost mantle. Scientific Reports, 5(18416). https://doi.org/10.1038/srep18416

Tromp, J., Tape, C., & Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160(1), 195–216. https://doi.org/10.1111/j.1365-246X.2004.02453.x

Tsuchiya, T. (2011). Elasticity of subducted basaltic crust at the lower mantle pressures: Insights on the nature of deep mantle heterogeneity. Physics of the Earth and Planetary Interiors, 188(3–4), 142–149. https://doi.org/10.1016/j.pepi.2011.06.018

Tsuchiya, T., & Tsuchiya, J. (2006). Effect of impurity on the elasticity of perovskite and postperovskite: Velocity contrast across the postperovskite transition in (Mg,Fe,Al)(Si,Al)O3. Geophysical Research Letters, 33(12), 10–13. https://doi.org/10.1029/2006GL025706

Tsuchiya, T., Tsuchiya, J., Umemoto, K., & Wentzcovitch, R. M. (2004). Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth and Planetary Science Letters, 224(3–4), 241–248. https://doi.org/10.1016/j.epsl.2004.05.017

Wang, X., Tsuchiya, T., & Hase, A. (2015). Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geoscience, 8(7), 556–559. https://doi.org/10.1038/ngeo2458

Waszek, L., Schmerr, N. C., & Ballmer, M. D. (2018). Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nature Communications, 9(385). https://doi.org/10.1038/s41467-017-02709-4

Wentzcovitch, R. M., Karki, B. B., Cococcioni, M., & de Gironcoli, S. (2004). Thermoelastic Properties of MgSiO3-Perovskite: Insights on the Nature of the Earth’s Lower Mantle. Physical Review Letters, 92(1–9). https://doi.org/10.1103/PhysRevLett.93.126403

Wentzcovitch, R. M., Tsuchiya, T., & Tsuchiya, J. (2006). MgSiO3 postperovskite at D" conditions. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 543–546. https://doi.org/10.1073/pnas.0506879103

Whittaker, S., Thorne, M. S., Schmerr, N. C., & Miyagi, L. (2015). Seismic array constraints on the D" discontinuity beneath Central America. Journal of Geophysical Research: Solid Earth, 121(1), 152–169. https://doi.org/10.1002/2015JB012392.Received

Woodhouse, J. H., & Dziewonski, A. M. (1984). Mapping the upper mantle: Threedimensional modeling of earth structure by inversion of seismic waveforms. Journal of Geophysical Research: Solid Earth, 89(B7), 5953–5986. https://doi.org/10.1029/JB089iB07p05953

Xu, W., Lithgow-Bertelloni, C., Stixrude, L., & Ritsema, J. (2008). The effect of bulk composition and temperature on mantle seismic structure. Earth and Planetary Science Letters, 275(1–2), 70–79. https://doi.org/10.1016/j.epsl.2008.08.012

Yamaya, L., Borgeaud, A. F. E., Kawai, K., Geller, R. J., & Konishi, K. (2018). Effects of redetermination of source time functions on the 3-D velocity structure inferred by waveform inversion. Physics of the Earth and Planetary Interiors, 282, 117–143. https://doi.org/10.1016/j.pepi.2018.04.012

Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzer, B. (2016). High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264–273. https://doi.org/10.1016/j.epsl.2015.11.030

Zhao, D., & Ohtani, E. (2009). Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics. Gondwana Research, 16(3–4), 401–413. https://doi.org/10.1016/j.gr.2009.01.005

Zhou, Y. (2018). Anomalous mantle transition zone beneath the Yellowstone hotspot track. Nature Geoscience, 11(6), 449–453. https://doi.org/10.1038/s41561-018-0126-4

Zhu, H., Bozdăg, E., & Tromp, J. (2015). Seismic structure of the European upper mantle based on adjoint tomography. Geophysical Journal International, 201(1), 18–52. https://doi.org/10.1093/gji/ggu492

Zhu, H., Komatitsch, D., & Tromp, J. (2017). Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray. Geophysical Journal International, 211(1), 349–377. https://doi.org/10.1093/gji/ggx305

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る