リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Impact of postoperative physical activity on the development of pneumonia in the subacute phase after esophagectomy in patients with esophageal cancer: A retrospective cohort study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Impact of postoperative physical activity on the development of pneumonia in the subacute phase after esophagectomy in patients with esophageal cancer: A retrospective cohort study

Kondo, Shin Inoue, Tatsuro Saito, Takashi Fujikawa, Takashi Kamada, Motomu Inoue, Seiya Fujiwara, Satoshi Goto, Masakazu Sato, Nori Ono, Rei Akisue, Toshihiro Katoh, Shinsuke Takizawa, Hiromitsu Matsuura, Tetsuya 神戸大学

2023.02

概要

Purpose: Physical activity is important to improve recovery following surgery. This study investigated the impact of physical activity on the development of pneumonia after radical esophagectomy in patients with thoracic esophageal cancer in the subacute phase from postoperative day 11 to hospital discharge. Methods: This retrospective cohort study included 83 patients who underwent radical esophagectomy for esophageal cancer between 2016 and 2022. Physical activity was measured using an activity tracker, and the average number of steps between postoperative days 8 and 10 was examined. The primary outcome was pneumonia (Clavien-Dindo classification 2 or higher) developing between postoperative day 11 and hospital discharge. We used the receiver operating characteristic (ROC) curve analysis to calculate the optimal cutoff value of physical activity that can predict the development of pneumonia and define low physical activity. We used logistic regression analysis to investigate the impact of low physical activity on postoperative pneumonia. Results: Pneumonia developed in 10 patients (12.0%) during the observation period. The optimal cutoff value of physical activity for predicting pneumonia was 1494 steps per day (sensitivity: 60.0%, specificity: 89.0%, area under the curve: 0.743). In multivariate analysis, low physical activity was an independent predictor of incident pneumonia [odds ratio: 12.10, 95% confidence interval: 2.21–65.90, p = 0.004], with adjustment for age, gastric tube reconstruction route, and postoperative recurrent nerve palsy. Conclusions: Physical activity following radical esophagectomy in patients with thoracic esophageal cancer was an independent predictor of the development of pneumonia in the subacute phase after radical esophagectomy.

この論文で使われている画像

参考文献

Bédard, A., Carsin, A.-E., Fuertes, E., Accordini, S., Dharmage, S.C., Garcia-Larsen, V.,

Heinrich, J., Janson, C., Johannessen, A., Leynaert, B., Sánchez-Ramos, J.L., Peralta,

G.P., Pin, I., Squillacioti, G., Weyler, J., Jarvis, D., Garcia-Aymerich, J., 2020. Physical

activity and lung function-Cause or consequence? PLoS One 15, e0237769.

https://doi.org/10.1371/journal.pone.0237769

Boden, I., Skinner, E.H., Browning, L., Reeve, J., Anderson, L., Hill, C., Robertson, I.K., Story,

D., Denehy, L., 2018. Preoperative physiotherapy for the prevention of respiratory

complications after upper abdominal surgery: pragmatic, double blinded, multicentre

randomised controlled trial. BMJ 360, j5916. https://doi.org/10.1136/bmj.j5916

Brower, R.G., 2009. Consequences of bed rest. Crit Care Med 37, S422-428.

https://doi.org/10.1097/CCM.0b013e3181b6e30a

Chastin, S.F.M., Abaraogu, U., Bourgois, J.G., Dall, P.M., Darnborough, J., Duncan, E.,

Dumortier, J., Pavón, D.J., McParland, J., Roberts, N.J., Hamer, M., 2021. Effects of

Regular Physical Activity on the Immune System, Vaccination and Risk of CommunityAcquired Infectious Disease in the General Population: Systematic Review and MetaAnalysis. Sports Med 51, 1673–1686. https://doi.org/10.1007/s40279-021-01466-1

Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Chou, M.-Y., Iijima, K., Jang, H.C.,

Kang, L., Kim, M., Kim, S., Kojima, T., Kuzuya, M., Lee, J.S.W., Lee, S.Y., Lee, W.-J.,

19

20

Lee, Y., Liang, C.-K., Lim, J.-Y., Lim, W.S., Peng, L.-N., Sugimoto, K., Tanaka, T., Won,

C.W., Yamada, M., Zhang, T., Akishita, M., Arai, H., 2020. Asian Working Group for

Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med

Dir Assoc 21, 300-307.e2. https://doi.org/10.1016/j.jamda.2019.12.012

Dindo, D., Demartines, N., Clavien, P.-A., 2004. Classification of surgical complications: a new

proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg

240, 205–213. https://doi.org/10.1097/01.sla.0000133083.54934.ae

Global Burden of Disease Cancer Collaboration, 2019. Global, Regional, and National Cancer

Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and DisabilityAdjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the

Global

Burden

of

Disease

Study.

JAMA

oncology

5,

1749–1768.

https://doi.org/10.1001/jamaoncol.2019.2996

Griffin, S.M., Jones, R., Kamarajah, S.K., Navidi, M., Wahed, S., Immanuel, A., Hayes, N.,

Phillips, A.W., 2020. Evolution of Esophagectomy for Cancer Over 30 Years: Changes

in

Presentation,

Management

and

Outcomes.

Ann

Surg

Oncol.

https://doi.org/10.1245/s10434-020-09200-3

Honke, J., Hiramatsu, Y., Kawata, S., Booka, E., Matsumoto, T., Morita, Y., Kikuchi, H.,

Kamiya, K., Mori, K., Takeuchi, H., 2022. Usefulness of wearable fitness tracking

devices

in

patients

undergoing

esophagectomy.

Esophagus

19,

260–268.

20

21

https://doi.org/10.1007/s10388-021-00893-3

Huisingh-Scheetz, M., Wroblewski, K., Kocherginsky, M., Huang, E., Dale, W., Waite, L.,

Schumm, L.P., 2018. The Relationship Between Physical Activity and Frailty Among

U.S. Older Adults Based on Hourly Accelerometry Data. J Gerontol A Biol Sci Med Sci

73, 622–629. https://doi.org/10.1093/gerona/glx208

Kikuchi, H., Endo, H., Yamamoto, H., Ozawa, S., Miyata, H., Kakeji, Y., Matsubara, H., Doki,

Y., Kitagawa, Y., Takeuchi, H., 2022. Impact of Reconstruction Route on Postoperative

Morbidity After Esophagectomy: Analysis of Esophagectomies in the Japanese National

Clinical

Database.

Ann

Gastroenterol

Surg

6,

46–53.

https://doi.org/10.1002/ags3.12501

Kondo, S., Inoue, T., Yoshida, T., Saito, T., Inoue, S., Nishino, T., Goto, M., Sato, N., Ono, R.,

Tangoku, A., Katoh, S., 2022. Impact of preoperative 6-minute walk distance on longterm prognosis after esophagectomy in patients with esophageal cancer. Esophagus 19,

95–104. https://doi.org/10.1007/s10388-021-00871-9

Koyanagi, K., Igaki, H., Iwabu, J., Ochiai, H., Tachimori, Y., 2015. Recurrent Laryngeal Nerve

Paralysis after Esophagectomy: Respiratory Complications and Role of Nerve

Reconstruction. Tohoku J Exp Med 237, 1–8. https://doi.org/10.1620/tjem.237.1

Ljungqvist, O., Scott, M., Fearon, K.C., 2017. Enhanced Recovery After Surgery: A Review.

JAMA Surg 152, 292–298. https://doi.org/10.1001/jamasurg.2016.4952

21

22

Low, C.A., Bovbjerg, D.H., Ahrendt, S., Choudry, M.H., Holtzman, M., Jones, H.L., Pingpank,

J.F., Ramalingam, L., Zeh, H.J., Zureikat, A.H., Bartlett, D.L., 2018. Fitbit step counts

during inpatient recovery from cancer surgery as a predictor of readmission. Ann Behav

Med 52, 88–92. https://doi.org/10.1093/abm/kax022

Low, D.E., Allum, W., De Manzoni, G., Ferri, L., Immanuel, A., Kuppusamy, M., Law, S.,

Lindblad, M., Maynard, N., Neal, J., Pramesh, C.S., Scott, M., Mark Smithers, B., Addor,

V., Ljungqvist, O., 2019. Guidelines for Perioperative Care in Esophagectomy:

Enhanced Recovery After Surgery (ERAS®) Society Recommendations. World J Surg

43, 299–330. https://doi.org/10.1007/s00268-018-4786-4

Mitchell, B.G., Russo, P.L., Cheng, A.C., Stewardson, A.J., Rosebrock, H., Curtis, S.J.,

Robinson, S., Kiernan, M., 2019. Strategies to reduce non-ventilator-associated

hospital-acquired pneumonia: A systematic review. Infect Dis Health 24, 229–239.

https://doi.org/10.1016/j.idh.2019.06.002

Nakajima, H., Yokoyama, Y., Inoue, T., Nagaya, M., Mizuno, Y., Kayamoto, A., Nishida, Y.,

Nagino, M., 2020. How Many Steps Per Day are Necessary to Prevent Postoperative

Complications Following Hepato-Pancreato-Biliary Surgeries for Malignancy? Ann

Surg Oncol 27, 1387–1397. https://doi.org/10.1245/s10434-020-08218-x

Nevo, Y., Shaltiel, T., Constantini, N., Rosin, D., Gutman, M., Zmora, O., Nevler, A., 2022.

Activity Tracking After Surgery: Does It Correlate With Postoperative Complications?

22

23

Am Surg 88, 226–232. https://doi.org/10.1177/0003134820988818

Okamura, A., Watanabe, M., Mine, S., Nishida, K., Kurogochi, T., Imamura, Y., 2016.

Spirometric Lung Age Predicts Postoperative Pneumonia After Esophagectomy. World

J Surg 40, 2412–2418. https://doi.org/10.1007/s00268-016-3547-5

Pisarska, M., Małczak, P., Major, P., Wysocki, M., Budzyński, A., Pędziwiatr, M., 2017.

Enhanced recovery after surgery protocol in oesophageal cancer surgery: Systematic

review

and

meta-analysis.

PLoS

One

12,

e0174382.

https://doi.org/10.1371/journal.pone.0174382

Puccetti, F., Wijnhoven, B.P.L., Kuppusamy, M., Hubka, M., Low, D.E., 2022. Impact of

standardized clinical pathways on esophagectomy: a systematic review and metaanalysis. Dis Esophagus 35, doab027. https://doi.org/10.1093/dote/doab027

Quinn, B., Giuliano, K.K., Baker, D., 2020. Non-ventilator health care-associated pneumonia

(NV-HAP): Best practices for prevention of NV-HAP. Am J Infect Control 48, A23–

A27. https://doi.org/10.1016/j.ajic.2020.03.006

Rice, T.W., Ishwaran, H., Ferguson, M.K., Blackstone, E.H., Goldstraw, P., 2017. Cancer of the

Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer. J Thorac

Oncol 12, 36–42. https://doi.org/10.1016/j.jtho.2016.10.016

Sato, S., Nagai, E., Taki, Y., Watanabe, M., Watanabe, Y., Nakano, K., Yamada, H., Chiba, T.,

Ishii, Y., Ogiso, H., Takagi, M., 2018. Hand grip strength as a predictor of postoperative

23

24

complications in esophageal cancer patients undergoing esophagectomy. Esophagus 15,

10–18. https://doi.org/10.1007/s10388-017-0587-3

Shimizu, K., Hanaoka, Y., Akama, T., Kono, I., 2017. Ageing and free-living daily physical

activity effects on salivary beta-defensin 2 secretion. J Sports Sci 35, 617–623.

https://doi.org/10.1080/02640414.2016.1182640

Soutome, S., Hasegawa, T., Yamguchi, T., Aoki, K., Kanamura, N., Mukai, T., Yamazoe, J.,

Nishikawa, M., Isomura, E., Hoshi, K., Umeda, M., Joint Research Committee of

Japanese Society of Oral Care, 2020. Prevention of postoperative pneumonia by

perioperative oral care in patients with esophageal cancer undergoing surgery: a

multicenter retrospective study of 775 patients. Support Care Cancer 28, 4155–4162.

https://doi.org/10.1007/s00520-019-05242-w

Takeuchi, M., Yokose, T., Kawakubo, H., Matsuda, S., Mayanagi, S., Irino, T., Fukuda, K.,

Nakamura, R., Wada, N., Obara, H., Kitagawa, Y., 2020. The perioperative presepsin as

an accurate diagnostic marker of postoperative infectious complications after

esophagectomy:

prospective

cohort

study.

Esophagus

17,

399–407.

https://doi.org/10.1007/s10388-020-00736-7

Tamagawa, A., Aoyama, T., Tamagawa, H., Ju, M., Komori, K., Maezawa, Y., Kano, K.,

Kazama, K., Murakawa, M., Atsumi, Y., Sawazaki, S., Hara, K., Numata, M., Sato, T.,

Yukawa, N., Masuda, M., Rino, Y., 2019. Influence of Postoperative Pneumonia on

24

25

Esophageal Cancer Survival and Recurrence. Anticancer Res. 39, 2671–2678.

https://doi.org/10.21873/anticanres.13392

Yoshida, T., Seike, J., Miyoshi, T., Yamai, H., Takechi, H., Yuasa, Y., Furukita, Y., Yamamoto,

Y., Umemoto, A., Tangoku, A., 2010. Preoperative chemotherapy with weekly docetaxel

plus low-dose cisplatin and 5-fluorouracil for stage II/III squamous cell carcinoma of

the esophagus. Esophagus 7, 95–100. https://doi.org/10.1007/s10388-010-0234-8

25

26

FIGURE LEGENDS

Figure 1. Cumulative incidence of subacute pneumonia after radical esophagectomy.

Figure 2. Receiver operating characteristic curves for physical activity (steps/day) to predict

the development of pneumonia.

26

27

TABLES

Table 1. Patients characteristics

Pneumonia (+)

Pneumonia (-)

n = 10

n = 73

72.5 (62.0–76.0)

67.0 (60.0–71.0)

0.310

Female

2 (20.0)

16 (21.9)

1.000

Male

8 (80.0)

57 (78.1)

21.9 ± 2.6

22.1 ± 2.6

0.842

0 (0.0%)

0 (0.0%)

1.000

Normal

7 (70.0)

44 (60.3)

0.824

Risk for undernutrition

3 (30.0)

26 (35.6)

Undernutrition

0 (0.0)

3 (4.1)

2 (20.0)

9 (12.3)

0.615

1 (10.0)

15 (20.5)

0.376

1–399

0 (0.0)

10 (13.7)

≥ 400

9 (90.0)

48 (65.8)

4 (40.0)

34 (46.6)

p-value

Age (years)

Median (IQR)

Sex

Body mass index (kg/m2)

Mean ± SD

Performance status

≥2

Nutrition status

Sarcopenia

yes

Brinkman Index

Comorbidity

Hypertension

0.748

27

28

Diabetes

1 (10.0)

13 (17.8)

1.000

Cardiovascular disease

0 (0.0)

8 (11.0)

0.587

Pulmonary disease

1 (10.0)

4 (5.5)

0.483

%VC

98.0 ± 16.6

104.6 ± 13.2

0.216

FEV1%

72.1 ± 3.5

75.7 ± 7.3

0.172

Upper thoracic

1 (10.0)

7 (9.6)

0.526

Middle thoracic

7 (70.0)

33 (45.2)

Lower thoracic

2 (20.0)

26 (35.6)

Abdominal esophagus

0 (0.0)

7 (9.6)

Pulmonary Function Test

Location of tumor

Histology

Squamous

cell 10 (100.0)

65 (89.0)

0.587

carcinoma

Adenocarcinoma

0 (0.0)

8 (11.0)

1-2

4 (40.0)

35 (47.9)

3-4

6 (60.0)

38 (52.1)

Not administered

1 (10.0)

14 (19.2)

Chemotherapy

7 (70.0)

52 (71.2)

Chemoradiotherapy

2 (20.0)

7 (9.6)

6 (60.0)

53 (72.6)

Clinical stage

0.743

Neoadjuvant therapy

0.495

Intraoperative variables

Surgical approach

Thoracoscopy-assisted

0.465

28

29

Mediastinoscopy-

4 (40.0)

20 (27.4)

Two-field

2 (20.0)

21 (28.8)

Three-field

8 (80.0)

52 (71.2)

subcutaneous

2 (20.0)

3 (4.1)

retrosternal

7 (70.0)

57 (76.1)

posterior mediastinal

1 (10.0)

13 (17.8)

638.0 (501.0–712.0)

582.0 (512.0–672.0)

0.611

93.5 (77.0–208.5)

150.0 (74.0–310.5)

0.471

2.0 (2.0–5.5)

2.0 (2.0–4.0)

0.695

8.0 (8.0–9.0)

0.037

2.0 (2.0–2.0)

0.221

4.0 (4.0–6.0)

0.858

1,406.6 ± 311.4

0.835

assisted

Lymph node dissection

0.719

Reconstruction route

0.164

Operative time (min)

Median (IQR)

Blood loss (ml)

Median (IQR)

Postoperative outcomes

Postoperative

oxygenation (days)

Initiation of oral intake 12.0 (9.0–23.8)

(days)

Initiation of Ambulation 2.0 (2.0–2.0)

(days)

Chest

tube

removal 4.5 (3.0–8.5)

(days)

Total

energy

intake 1,384.6 ± 318.8

(kcal/day)

Physical

activity 1,479.5

(1,173.0– 2,848.0

(2,234.0– 0.013

29

30

(steps/day)

2,518.5)

4,268.0)

Albumin level (g/dl)

2.8 (2.7-2.9)

3.0 (2.7–3.10)

0.333

CRP level (mg/dl)

5.1 (2.6-9.0)

2.34 (1.1–4.9)

0.066

Recurrent nerve paralysis

3 (30.0)

21 (28.8)

1.000

Anastomotic leakage

3 (30.0)

14 (19.2)

0.420

Surgical site infection

2 (20.0)

17 (23.3)

1.000

Length of stay (days)

45.5 (31.0–60.5)

24.0 (18.0–36.0)

0.002

Data are expressed as n (%) unless otherwise specified. IQR, interquartile range; SD, standard

deviation; %VC, percentage of vital capacity; FEV1%, forced expiratory volume % in 1 s.

30

31

Table 2. Univariate and multivariate analyses on the impact of physical activity on

postoperative pneumonia

Variable (reference)

Univariate analysis

OR

95% CI

multivariate analysis

p-

OR

95% CI

value

pvalue

Physical activity (NPA)

LPA

12.20

2.82–

0.001

12.10

52.60

2.21–

0.004

65.90

Age (<70 years)

≥70 years

3.06

0.79–

0.106

1.37

11.90

Reconstruction

0.28–

0.698

6.81

route

(retrosternal)

subcutaneous

5.43

0.77–

0.090

3.92

38.30

posterior mediastinal

0.63

0.07–5.54 0.674

0.36–

0.260

42.20

0.75

0.07–

0.808

7.87

Recurrent nerve paralysis

31

32

(no)

yes

1.06

0.25–4.50 0.936

0.54

0.09–

0.504

3.35

CI, confidence interval; OR, odds ratio; NPA, normal physical activity; LPA, low physical

activity

32

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る