リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Association Between Retinal Layer Thickness and Perfusion Status in Extramacular Areas in Diabetic Retinopathy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Association Between Retinal Layer Thickness and Perfusion Status in Extramacular Areas in Diabetic Retinopathy

伊藤, 寛高 名古屋大学

2021.06.29

概要

PURPOSE:
This study was performed to investigate the association between changes in retinal layer thickness and perfusion status in the extramacular areas of eyes with diabetic retinopathy.

DESIGN:
Retrospective cross-sectional study.

METHODS:
The medical records of 70 eyes from 55 patients with diabetes were reviewed. The status of retinal perfusion in extramacular areas was evaluated using swept-source optical coherence tomography angiography. Retinal layer thickness was measured in nonperfused areas (NPA) larger than 2 optic disc areas, areas of sparse capillaries (SC), and perfused areas (PA-DR) in eyes with diabetic retinopathy. Retinal layer thickness was also measured in perfused areas in eyes without diabetic retinopathy (PA-NDR), and the thicknesses were then compared. In addition, swept-source optical coherence tomography angiography images and retinal thickness maps were compared to investigate the distribution of retinal thickness changes and spatial relationships to areas of retinal perfusion.

RESULTS:
The inner retinal thickness in NPA was significantly thinner than the inner retinal thicknesses in SC, PA-DR, and PA-NDR (all P < .001), and the inner retinal thickness in PA-NDR and SC was significantly thinner than that in PA-DR (P [ .006 and .031, respectively). In a distribution analysis of the extramacular areas, NPA spatially overlapped with areas of severe retinal thinning in all locations. Local thickening with smooth shapes and gentle borders overlapped with areas of capillary abnormalities. Neovascularization was present at sites of local thickening with irregular shapes and unnatural clear borders.

CONCLUSIONS:
Changes in retinal layer thickness were associated with perfusion status, suggesting that retinal thickness maps can reflect perfusion status. (Am J Ophthalmol 2020;215:25–36.

この論文で使われている画像

参考文献

1. Falkenberry SM, Ip MS, Blodi BA, Gunther JB. Optical coherence tomography findings in central retinal artery occlusion. Ophthalmic Surg Lasers Imaging 2006;37(6): 502–505.

2. Shinoda K, Yamada K, Matsumoto CS, Kimoto K, Nakatsuka K. Changes in retinal thickness are correlated with alterations of electroretinogram in eyes with central retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 2008;246(7):949–954.

3. Ikeda F, Kishi S. Inner neural retina loss in central retinal artery occlusion. Jpn J Ophthalmol 2010;54(5):423–429.

4. Leung CK, Tham CC, Mohammed S, et al. In vivo measurements of macular and nerve fibre layer thickness in retinal arterial occlusion. Eye (Lond) 2007;21(12): 1464–1468.

5. Onishi AC, Ashraf M, Soetikno BT, Fawzi AA. Multilevel ischemia in disorganization of the retinal inner layers on projection-resolved optical coherence tomography angiography. Retina 2019;39(8):1588–1594.

6. Nicholson L, Ramu J, Triantafyllopoulou I, et al. Diagnostic accuracy of disorganization of the retinal inner layers in detecting macular capillary non-perfusion in diabetic retinopathy. Clin Exp Ophthalmol 2015;43(8):735–741.

7. Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol 2014;132(11):1309–1316.

8. Zur D, Iglicki M, Sala-Puigdollers A, et al. Disorganization of retinal inner layers as a biomarker in patients with diabetic macular oedema treated with dexamethasone implant. Acta Ophthalmol 2020;98(2):e217–e223.

9. Joltikov KA, Sesi CA, de Castro VM, et al. Disorganization of retinal inner layers (DRIL) and neuroretinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 2018; 59(13):5481–5486.

10. van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 2009;50(7):3404–3409.

11. van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med 2004;10(4):368–373.

12. Fujiwara K, Yasuda M, Hata J, et al. Glucose tolerance levels and circumpapillary retinal nerve fiber layer thickness in a general Japanese population: the Hisayama study. Am J Ophthalmol 2019;205:140–146.

13. Yasuno Y, Madjarova VD, Makita S, et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt Express 2005;13(26):10652–10664.

14. Hirata M, Tsujikawa A, Matsumoto A, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2011;52(8):4971–4978.

15. Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 2013;58(5): 387–429.

16. Wilkinson CP, Ferris FL 3rd, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003;110(9): 1677–1682.

17. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991;98(5 suppl):823–833.

18. Kim K, Kim ES, Yu SY. Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. Br J Ophthalmol 2018;102(9):1226–1231.

19. Kim K, Kim ES, Kim DG, Yu SY. Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: longitudinal study using OCT angiography. Acta Diabetol 2019;56(12):1275–1282.

20. Lavia C, Couturier A, Erginay A, Dupas B, Tadayoni R, Gaudric A. Reduced vessel density in the superficial and deep plexuses in diabetic retinopathy is associated with structural changes in corresponding retinal layers. PLoS One 2019; 14(7):e0219164.

21. Couturier A, Rey PA, Erginay A, et al. Widefield OCTangiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology 2019;126(12):1685–1694.

22. Bonnin S, Dupas B, Lavia C, et al. Anti-vascular endothelial growth factor therapy can improve diabetic retinopathy score without change in retinal perfusion. Retina 2019;39(3): 426–434.

23. Yasukura S, Murakami T, Suzuma K, et al. Diabetic nonperfused areas in macular and extramacular regions on wide-field optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2018;59(15):5893–5903.

24. Morino K, Murakami T, Dodo Y, et al. Characteristics of diabetic capillary nonperfusion in macular and extramacular white spots on optical coherence tomography angiography. Invest Ophthalmol Vis Sci 2019;60(5):1595–1603.

25. Sambhav K, Grover S, Chalam KV. The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol 2017;62(6):838–866.

26. Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt 2015; 20(10):100901.

27. Kirby MA, Zhou K, Pitre JJ, et al. Spatial resolution in dynamic optical coherence elastography. J Biomed Opt 2019; 24(9):1–16.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る