リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantification of Macular Microvascular Changes in Patients With Retinitis Pigmentosa Using Optical Coherence Tomography Angiography」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantification of Macular Microvascular Changes in Patients With Retinitis Pigmentosa Using Optical Coherence Tomography Angiography

Inooka, Daiki 井岡, 大樹 名古屋大学

2020.04.02

概要

PURPOSE. To evaluate the microvascular changes in eyes with RP quantitatively using optical coherence tomography angiography (OCTA) and to determine whether the correlations between these indices and the severity of RP are significant.

METHODS. This was a retrospective, observational study. The medical records of 53 RP patients and 46 controls were reviewed. The OCTA images were obtained with the Cirrus 5000 with Angioplex, and an automated program was used to analyze the microvascular patterns. The perfusion density (PD) and vessel length density (VLD) were used as indices of the microvascular density, whereas the vessel diameter index (VDI) was used as a measure of the caliber of the vessels. The width of the ellipsoid zone (EZ) in the OCT images and the mean deviation (MD) of the Humphry Field Analyzer (HFA) were used to determine the severity of the RP. Student’s t-tests and Spearman’s correlation tests were used.

RESULTS. Both the PD and VLD in the superficial and deep plexuses and the whole retina were significantly reduced, and the VDI was significantly increased in RP patients compared with the corresponding values of the controls (P < 0.001). Spearman’s rank tests indicated the RP severity was significantly correlated with the PD and VLD in all three layers (P < 0.001, r ranging from 0.50 to 0.87) and significantly correlated with VDI in the deep and the whole retina (P < 0.001, ranging from 0.64 to 0.73).

CONCLUSIONS. Quantitative changes in the microvascular density might be useful for examining the pathophysiology of RP.

この論文で使われている画像

参考文献

1. Krill AE, Archer D, Newell FW. Fluorescein angiography in retinitis pigmentosa. Am J Ophthalmol. 1970;69:826–835.

2. Hyvarinen L, Maumenee AE, Kelley J, Cantollino S. Fluorescein angiographic findings in retinitis pigmentosa. Am J Ophthalmol. 1971;71:17–26.

3. Grunwald JE, Maguire AM, Dupont J. Retinal hemodynamics in retinitis pigmentosa. Am J Ophthalmol. 1996;122:502–508.

4. Zhang Y, Harrison JM, Nateras OSE, Chalfin S, Duong TQ. Decreased retinal-choroidal blood flow in retinitis pigmentosa as measured by MRI. Doc Ophthalmol. 2013;126:187–197.

5. Murakami Y, Ikeda Y, Akiyama M, et al. Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa. Acta Ophthalmol. 2015;93:E644–E648.

6. Parodi MB, Cicinelli MV, Rabiolo A, et al. Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography. Br J Ophthalmol. 2017;101:428–432.

7. Toto L, Borrelli E, Mastropasqua R, et al. Macular features in retinitis pigmentosa: Correlations among ganglion cell complex thickness, capillary density, and macular function. Invest Ophthalmol Vis Sci. 2016;57:6360–6366.

8. Sugahara M, Miyata M, Ishihara K, et al. Optical coherence tomography angiography to estimate retinal blood flow in eyes with retinitis pigmentosa. Sci Rep. 2017;7:46396.

9. Koyanagi Y, Murakami Y, Funatsu J, et al. Optical coherence tomography angiography of the macular microvasculature changes in retinitis pigmentosa [published online ahead of print5 2017]. Acta Ophthalmol. doi:10.1111/aos13475.

10. Rezaei KA, Zhang QQ, Chen CL, Chao JF, Wang RK. Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography. Graefes Arch Clin Exp Ophthalmol. 2017;255:1287–1295.

11. Rosenfeld PJ, Durbin MK, Roisman L, et al. Zeiss AngioplexTM spectral domain optical coherence tomography angiography: technical aspects. In: Bandello F, Souied EH, Querques G, eds. OCT Angiography in Retinal and Macular Diseases. Basel: Karger; 2016:56:18–29.

12. Kominami A, Ueno S, Kominami T, et al. Restoration of cone interdigitation zone associated with improvement of focal macular ERG after fovea-off rhegmatogenous retinal reattachment. Invest Ophthalmol Vis Sci. 2016;57:1604–1611.

13. Kominami T, Ueno S, Kominami A, et al. Associations between outer retinal structures and focal macular electroretinograms in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2017;58:5122–5128.

14. Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A. Three dimensional optical angiography. Opt Express. 2007;15: 4083–4097.

15. Miller AR, Roisman L, Zhang Q, et al. Comparison between spectral domain and swept source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2017;58:1499–1505.

16. Zhang Q, Chen CL, Chu Z, et al. Automated quantitation of choroidal neovascularization: a comparison study between spectral domain and swept source OCT angiograms. Invest Ophthalmol Vis Sci. 2017;58:1506–1513.

17. Kim AY, Chu ZD, Shahidzadeh A, Wang RKK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT362–OCT370.

18. Chu Z, Lin J, Gao C, et al. Quantitative assessment of the retinal microvasculature using OCT angiography. J Biomed Opt. 2016;21:066008.

19. Coscas F, Sellam A, Glacet-Bernard A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57:OCT211– OCT223.

20. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence angiography. Retina. 2015;35:2163–2180.

21. Eysteinsson T, Hardarson SH, Bragason D, Stefansson E. Retinal vessel oxygen saturation and vessel diameter in retinitis pigmentosa. Acta Ophthalmol. 2014;92:449–453.

22. Turksever C, Valmaggia C, Orgul S, Schorderet DF, Flammer J, Todorova MG. Retinal vessel oxygen saturation and its correlation with structural changes in retinitis pigmentosa. Acta Ophthalmol. 2014;92:454–460.

23. Zhang A, Zhang Q, Wang RK. Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. Biomed Opt Express. 2015;6:4130– 4143.

24. Mastropasqua R, Borrelli E, Agnifili L, et al. Radial peripapillary capillary network in patients with retinitis pigmentosa: an optical coherence tomography angiography study. Front Neurol. 2017;27:572.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る