リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The mutual relationship between the host immune system and radiotherapy: stimulating the action of immune cells by irradiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The mutual relationship between the host immune system and radiotherapy: stimulating the action of immune cells by irradiation

Watanabe, Tsubasa Sato, Genki Edward Yoshimura, Michio Suzuki, Minoru Mizowaki, Takashi 京都大学 DOI:10.1007/s10147-022-02172-2

2023.02

概要

The effects of irradiation on tumor tissue and the host immune system are interrelated. The antitumor effect of irradiation is attenuated in the immunocompromised hosts. In addition, radiation alone positively and negatively influences the host immune system. The positive effects of radiation are summarized by the ability to help induce and enhance tumor-antigen-specific immune responses. The cancer-immunity cycle is a multistep framework that illustrates how the tumor-antigen-specific immune responses are induced and how the induced antigen-specific immune cells exert their functions in tumor tissues. Irradiation affects each step of this cancer-immunity cycle, primarily in a positive manner. In contrast, radiation also has negative effects on the immune system. The first is that irradiation has the possibility to kill irradiated effector immune cells. The second is that irradiation upregulates immunosuppressive molecules in the tumor microenvironment, whereas the third is that irradiation to the tumor condenses immunosuppressor cells in the tumor microenvironment. When used in conjunction with radiotherapy, immune checkpoint inhibitors can further leverage the positive effects of radiation on the immune system and compensate for the negative effects of irradiation, which supports the rationale for the combination of radiotherapy and immune checkpoint inhibitors. In this review, we summarize the preclinical evidence for the reciprocal effects of radiation exposure and the immune system, and up-front topics of the combination therapy of immune checkpoint inhibitors and radiotherapy.

この論文で使われている画像

参考文献

316

1.

Blockade Therapy. Cancer Discov 8:1069–1086

317

318

2.

3.

4.

Antonia SJ, Villegas A, Daniel D, et al (2018) Overall Survival with Durvalumab after

Chemoradiotherapy in Stage III NSCLC. N Engl J Med 379:2342–2350

323

324

Antonia SJ, Villegas A, Daniel D, et al (2017) Durvalumab after Chemoradiotherapy in Stage III

Non-Small-Cell Lung Cancer. N Engl J Med 377:1919–1929

321

322

Morad G, Helmink BA, Sharma P, et al (2021) Hallmarks of response, resistance, and toxicity to

immune checkpoint blockade. Cell 184:5309–5337

319

320

Wei SC, Duffy CR, Allison JP (2018) Fundamental Mechanisms of Immune Checkpoint

5.

Faivre-Finn C, Vicente D, Kurata T, et al (2021) Four-Year Survival With Durvalumab After

325

Chemoradiotherapy in Stage III NSCLC-an Update From the PACIFIC Trial. J Thorac Oncol

326

16:860–867

19

327

6.

require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595

328

329

7.

8.

334

335

336

337

338

Chen J, Cao Y, Markelc B, et al (2019) Type I IFN protects cancer cells from CD8+ T cellmediated cytotoxicity after radiation. J Clin Invest 129:4224–4238

332

333

Gupta A, Probst HC, Vuong V, et al (2012) Radiotherapy Promotes Tumor-Specific Effector CD8

+ T Cells via Dendritic Cell Activation. J Immunol 189:558–566

330

331

Lee Y, Auh SL, Wang Y, et al (2009) Therapeutic effects of ablative radiation on local tumor

9.

Blair TC, Bambina S, Alice AF, et al (2020) Dendritic Cell Maturation Defines Immunological

Responsiveness of Tumors to Radiation Therapy. J Immunol 204:3416–3424

10. De La Maza L, Wu M, Wu L, et al (2017) In Situ Vaccination after Accelerated Hypofractionated

Radiation and Surgery in a Mesothelioma Mouse Model. Clin Cancer Res 23:5502–5513

11. Bos PD, Plitas G, Rudra D, et al (2013) Transient regulatory T cell ablation deters oncogenedriven breast cancer and enhances radiotherapy. J Exp Med 210:2435–2466

339

12. Kohno M, Murakami J, Wu L, et al (2020) Foxp3+ Regulatory T Cell Depletion after Nonablative

340

Oligofractionated Irradiation Boosts the Abscopal Effects in Murine Malignant Mesothelioma. J

341

Immunol 205:2519–2531

342

343

344

13. Wei J, Montalvo-Ortiz W, Yu L, et al (2021) Sequence of αPD-1 relative to local tumor irradiation

determines the induction of abscopal antitumor immune responses. Sci Immunol 6:eabg0117

14. Liang H, Deng L, Hou Y, et al (2017) Host STING-dependent MDSC mobilization drives

20

345

346

347

348

349

350

351

extrinsic radiation resistance. Nat Commun 8:1736

15. Jones KI, Tiersma J, Yuzhalin AE, et al (2018) Radiation combined with macrophage depletion

promotes adaptive immunity and potentiates checkpoint blockade. EMBO Mol Med 10:e9342

16. Baumann T, Dunkel A, Schmid C, et al (2020) Regulatory myeloid cells paralyze T cells through

cell-cell transfer of the metabolite methylglyoxal. Nat Immunol 21:555–566

17. Bergonié J, Tribondeau L (2003) Interpretation of some results from radiotherapy and an attempt

to determine a rational treatment technique. 1906. Yale J Biol Med 76:181–182

352

18. Dunn PL, North RJ (1991) Selective radiation resistance of immunologically induced T cells as

353

the basis for irradiation-induced T-cell-mediated regression of immunogenic tumor. J Leukoc

354

Biol 49:388–396

355

19. Alexandru M, Rodica A, Dragos-Eugen G, et al (2021) Assessing the Spleen as an Organ at Risk

356

in Radiation Therapy and Its Relationship With Radiation-Induced Lymphopenia: A

357

Retrospective Study and Literature Review. Adv Radiat Oncol 6:100761

358

359

360

361

362

20. Schrek R, Stefani S (1964) Radioresistance of Phytohemagglutinin-Treat- ed Normal and

Leukemic Lymphocytes I, 2. Journal of the National Cancer Institute 32:507–521

21. Carloni M, Meschini R, Ovidi L, Palitti F (2001) PHA-induced cell proliferation rescues human

peripheral blood lymphocytes from X-ray-induced apoptosis. Mutagenesis 16:115–120

22. Heylmann D, Badura J, Becker H, et al (2018) Sensitivity of CD3/CD28-stimulated versus non-

21

363

stimulated lymphocytes to ionizing radiation and genotoxic anticancer drugs: key role of ATM in

364

the differential radiation response. Cell Death Dis 9:1053

365

366

367

368

369

370

371

372

373

374

375

376

377

378

23. Grayson JM, Harrington LE, Lanier JG, et al (2002) Differential sensitivity of naive and memory

CD8+ T cells to apoptosis in vivo. J Immunol 169:3760–3770

24. Arina A, Beckett M, Fernandez C, et al (2019) Tumor-reprogrammed resident T cells resist

radiation to control tumors. Nat Commun 10:3959

25. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity

39:1–10

26. Galluzzi L, Vitale I, Warren S, et al (2020) Consensus guidelines for the definition, detection and

interpretation of immunogenic cell death. J Immunother Cancer 8:e000337

27. Galluzzi L, Buqué A, Kepp O, et al (2017) Immunogenic cell death in cancer and infectious

disease. Nat Rev Immunol 17:97–111

28. Hernandez C, Huebener P, Schwabe RF (2016) Damage-associated molecular patterns in cancer:

a double-edged sword. Oncogene 35:5931–5941

29. Golden EB, Frances D, Pellicciotta I, et al (2014) Radiation fosters dose-dependent and

chemotherapy-induced immunogenic cell death. Oncoimmunology 3:e28518

379

30. Gardner A, Ruffell B (2016) Dendritic Cells and Cancer Immunity. Trends Immunol 37:855–865

380

31. Ablasser A, Schmid-Burgk JL, Hemmerling I, et al (2013) Cell intrinsic immunity spreads to

22

381

382

383

bystander cells via the intercellular transfer of cGAMP. Nature 503:530–534

32. Fuertes MB, Kacha AK, Kline J, et al (2011) Host type I IFN signals are required for antitumor

CD8+ T cell responses through CD8 alpha+ dendritic cells. J Exp Med 208:2005–2016

384

33. Deng L, Liang H, Xu M, et al (2014) STING-Dependent Cytosolic DNA Sensing Promotes

385

Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

386

Immunity 41:843–852

387

388

389

390

391

392

393

394

395

396

397

398

34. Vanpouille-Box C, Alard A, Aryankalayil MJ, et al (2017) DNA exonuclease Trex1 regulates

radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618

35. Mackenzie KJ, Carroll P, Martin C-A, et al (2017) cGAS surveillance of micronuclei links

genome instability to innate immunity. Nature 548:461–465

36. Flynn PJ, Koch PD, Mitchison TJ (2021) Chromatin bridges, not micronuclei, activate cGAS

after drug-induced mitotic errors in human cells. Proc Natl Acad Sci U S A 118:e2103585118

37. Schröder-Heurich B, Wieland B, Lavin MF, et al (2014) Protective role of RAD50 on chromatin

bridges during abnormal cytokinesis. FASEB J 28:1331–1341

38. Zhao Y, Zhang T, Wang Y, et al (2021) ICAM-1 orchestrates the abscopal effect of tumor

radiotherapy. Proc Natl Acad Sci U S A 118:e2010333118

39. Harlin H, Meng Y, Peterson AC, et al (2009) Chemokine expression in melanoma metastases

associated with CD8+ T-cell recruitment. Cancer Res 69:3077–3085

23

399

400

40. Matsumura S, Wang B, Kawashima N, et al (2008) Radiation-induced CXCL16 release by breast

cancer cells attracts effector T cells. J Immunol 181:3099–3107

401

41. Lugade AA, Sorensen EW, Gerber SA, et al (2008) Radiation-induced IFN-gamma production

402

within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139

403

42. Matsumura S, Demaria S (2010) Up-regulation of the pro-inflammatory chemokine CXCL16 is

404

a common response of tumor cells to ionizing radiation. Radiat Res 173:418–425

405

43. Lugade AA, Moran JP, Gerber SA, et al (2005) Local Radiation Therapy of B16 Melanoma

406

Tumors Increases the Generation of Tumor Antigen-Specific Effector Cells That Traffic to the

407

Tumor. J Immunol 174:7516–7523

408

44. Rodriguez-Ruiz ME, Garasa S, Rodriguez I, et al (2017) Intercellular Adhesion Molecule-1 and

409

Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium.

410

Int J Radiat Oncol Biol Phys 97:389–400

411

412

45. Slaney CY, Kershaw MH, Darcy PK (2014) Trafficking of T cells into tumors. Cancer Res

74:7168–7174

413

46. Yanguas A, Garasa S, Teijeira Á, et al (2018) ICAM-1-LFA-1 Dependent CD8+ T-Lymphocyte

414

Aggregation in Tumor Tissue Prevents Recirculation to Draining Lymph Nodes. Front Immunol

415

9:2084

416

47. Riaz N, Havel JJ, Makarov V, et al (2017) Tumor and Microenvironment Evolution during

24

417

Immunotherapy with Nivolumab. Cell 171:934-949

418

48. Benci JL, Johnson LR, Choa R, et al (2019) Opposing Functions of Interferon Coordinate

419

Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell 178:933-

420

948

421

49. Reits EA, Hodge JW, Herberts CA, et al (2006) Radiation modulates the peptide repertoire,

422

enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med

423

203:1259–1271

424

50. Sharabi AB, Nirschl CJ, Kochel CM, et al (2015) Stereotactic Radiation Therapy Augments

425

Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of

426

Tumor Antigen. Cancer Immunol Res 3:345–355

427

51. Zebertavage LK, Alice A, Crittenden MR, et al (2020) Transcriptional Upregulation of NLRC5

428

by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and

429

T Cell Cytotoxicity. Sci Rep 10:7376

430

431

52. Lhuillier C, Rudqvist N-P, Yamazaki T, et al (2021) Radiotherapy-exposed CD8+ and CD4+

neoantigens enhance tumor control. J Clin Invest 131:e138740

432

53. Lussier DM, Alspach E, Ward JP, et al (2021) Radiation-induced neoantigens broaden the

433

immunotherapeutic window of cancers with low mutational loads. Proc Natl Acad Sci U S A

434

118:e2102611118

25

435

436

437

438

54. van der Merwe PA, Bodian DL, Daenke S, et al (1997) CD80 (B7-1) binds both CD28 and CTLA4 with a low affinity and very fast kinetics. J Exp Med 185:393–403

55. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 Pathways: Similarities, Differences, and

Implications of Their Inhibition. Am J Clin Oncol 39:98–106

439

56. Freeman GJ, Long AJ, Iwai Y, et al (2000) Engagement of the PD-1 immunoinhibitory receptor

440

by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med

441

192:1027–1034

442

443

444

445

57. Latchman Y, Wood CR, Chernova T, et al (2001) PD-L2 is a second ligand for PD-1 and inhibits

T cell activation. Nat Immunol 2:261–268

58. Keir ME, Liang SC, Guleria I, et al (2006) Tissue expression of PD-L1 mediates peripheral T

cell tolerance. J Exp Med 203:883–895

446

59. Iwai Y, Ishida M, Tanaka Y, et al (2002) Involvement of PD-L1 on tumor cells in the escape from

447

host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A

448

99:12293–12297

449

450

451

452

60. Scheper W, Kelderman S, Fanchi LF, et al (2019) Low and variable tumor reactivity of the

intratumoral TCR repertoire in human cancers. Nat Med 25:89–94

61. Valpione S, Mundra PA, Galvani E, et al (2021) The T cell receptor repertoire of tumor infiltrating

T cells is predictive and prognostic for cancer survival. Nat Commun 12:4098

26

453

454

455

456

457

458

459

460

461

462

463

464

62. Twyman-Saint Victor C, Rech AJ, Maity A, et al (2015) Radiation and dual checkpoint blockade

activate non-redundant immune mechanisms in cancer. Nature 520:373–377

63. Rudqvist N-P, Pilones KA, Lhuillier C, et al (2018) Radiotherapy and CTLA-4 Blockade Shape

the TCR Repertoire of Tumor-Infiltrating T Cells. Cancer Immunol Res 6:139–150

64. Im SJ, Hashimoto M, Gerner MY, et al (2016) Defining CD8+ T cells that provide the

proliferative burst after PD-1 therapy. Nature 537:417–421

65. Sato H, Okonogi N, Nakano T (2020) Rationale of combination of anti-PD-1/PD-L1 antibody

therapy and radiotherapy for cancer treatment. Int J Clin Oncol 25:801–809

66. Sato H, Niimi A, Yasuhara T, et al (2017) DNA double-strand break repair pathway regulates PDL1 expression in cancer cells. Nat Commun 8:1751

67. Kachikwu EL, Iwamoto KS, Liao Y-P, et al (2011) Radiation Enhances Regulatory T Cell

Representation. Int J Radiat Oncol Biol Phys 81:1128–1135

465

68. Muroyama Y, Nirschl TR, Kochel CM, et al (2017) Stereotactic Radiotherapy Increases

466

Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment. Cancer Immunol

467

Res 5:992–1004

468

469

470

69. Zappasodi R, Serganova I, Cohen IJ, et al (2021) CTLA-4 blockade drives loss of Treg stability

in glycolysis-low tumours. Nature 591:652–658

70. Demaria S, Kawashima N, Yang AM, et al (2005) Immune-mediated inhibition of metastases

27

471

after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer.

472

Clin Cancer Res 11:728–734

473

474

71. Formenti SC, Rudqvist N-P, Golden E, et al (2018) Radiotherapy induces responses of lung

cancer to CTLA-4 blockade. Nat Med 24:1845–1851

475

72. Sia J, Hagekyriakou J, Chindris I, et al (2021) Regulatory T Cells Shape the Differential Impact

476

of Radiation Dose-Fractionation Schedules on Host Innate and Adaptive Antitumor Immune

477

Defenses. Int J Radiat Oncol Biol Phys 111:502–514

478

479

73. Gunderson AJ, Young KH (2018) Exploring optimal sequencing of radiation and immunotherapy

combinations. Adv Radiat Oncol 3:494–505

480

74. Siddiqui I, Schaeuble K, Chennupati V, et al (2019) Intratumoral Tcf1+PD-1+CD8+ T Cells with

481

Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint

482

Blockade Immunotherapy. Immunity 50:195–211

483

75. Pomeranz Krummel DA, Nasti TH, Izar B, et al (2020) Impact of Sequencing Radiation Therapy

484

and Immune Checkpoint Inhibitors in the Treatment of Melanoma Brain Metastases. Int J Radiat

485

Oncol Biol Phys 108:157–163

486

487

488

76. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin

Invest 117:1147–1154

77. Metz R, Rust S, Duhadaway JB, et al (2012) IDO inhibits a tryptophan sufficiency signal that

28

489

stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan.

490

Oncoimmunology 1:1460–1468

491

492

493

494

78. Chen B, Alvarado DM, Iticovici M, et al (2020) Interferon-Induced IDO1 Mediates Radiation

Resistance and Is a Therapeutic Target in Colorectal Cancer. Cancer Immunol Res 8:451–464

79. Thomas SR, Stocker R (1999) Redox reactions related to indoleamine 2,3-dioxygenase and

tryptophan metabolism along the kynurenine pathway. Redox Rep 4:199–220

495

80. Ju J-M, Nam G, Lee Y-K, et al (2021) IDO1 scavenges reactive oxygen species in myeloid-

496

derived suppressor cells to prevent graft-versus-host disease. Proc Natl Acad Sci U S A

497

118:e2011170118

498

81. Watanabe T, Gaedicke S, Guffart E, et al (2020) Adding Indoximod to Hypofractionated

499

Radiotherapy with Anti-PD-1 Checkpoint Blockade Enhances Early NK and CD8+ T-Cell–

500

Dependent Tumor ActivityEffects of Indoximod on Radiotherapy plus Anti-PD-1. Clin Cancer

501

Res 26:945–956

502

82. Van den Eynde BJ, van Baren N, Baurain J-F (2020) Is There a Clinical Future for IDO1

503

Inhibitors After the Failure of Epacadostat in Melanoma? Annu Rev Cancer Biol 4:241–256

29

Radiotherapy (RT)

Tumor microenvironment

CD8+T-cell

proliferation

[step 6, 7] RT enhances tumor immunogenicity

and helps antigen-specific T-cells

recognize and kill tumor cells.

RT-induced

peptide- MHC I complex

antigen-specific T-cells

Tumor antigen

MHC I

tumor

cell kill

[step 4, 5] RT enhances

T-cell trafficking & infiltration

Endothelium

[step 3] RT enhances priming of

antigen-specific T cells

ICAM-1

Integrin

MHC I TCR

[step 1] RT-induced

immunogenic cell death

[step 2] RT-induced

DC maturation and

antigen release from tumors

cGAS-STING

pathway

CD80 CD28

/86

Tumor-antigen, DAMPs, IFNs

Tumor-draining lymph nodes

Tumor cell

Dead

tumor cell

Dendritic

cell

CD8+T-cell

Irradiated site

Immune

suppressor cell

Activated cells

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る