リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on the Pharmacological Effects of Organogermanium Compound THGP on RIG-I-Mediated Viral Sensing and Viral Replication during Influenza a Virus Infection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on the Pharmacological Effects of Organogermanium Compound THGP on RIG-I-Mediated Viral Sensing and Viral Replication during Influenza a Virus Infection

Baidya, Sunanda 北海道大学

2021.12.24

概要

During microbial infections, microbes-associated molecular patterns (MAMPs) are mainly recognized by pattern recognition receptors (PRRs), including transmembrane-type Toll-like receptors (e.g., TLR3 and TLR9) and cytoplasmic sensors, such as RIG-I (retinoic acidinducible gene I), MDA5 (melanoma differentiation-associated protein 5) and cGAS (cyclic GMP-AMP synthetase) to trigger antiviral immune responses. In addition to the interactions, the recognition of viral nucleic acids by viral polymerase is a crucial event during viral replication. It has previously been reported that, a hydrolysate of Ge-132, 3-(trihydroxygermyl) propanoic acid (THGP) shows a modulatory effect on microbial infections, inflammation, and immune responses. However, the detailed mechanism by which THGP can modify these processes during viral infections remained unknown. The results of this study demonstrated that THGP can specifically downregulate type I interferon (IFN) production in response to stimulation with a cytosolic RNA sensor RIG-I ligand 5′-triphosphate RNA (3pRNA) but not double-stranded RNA, DNA or lipopolysaccharide, which are ligands for MDA5, cGAS and TLR-4 respectively. Consistently, treatment with THGP resulted in dose-dependent suppression of type I IFN induction upon infections with influenza virus (FluV) and vesicular stomatitis virus that are known to be mainly sensed by RIG-I but not EMCV, recognized by MDA5. Mechanistically, detailed molecular analyses displayed that, THGP directly binds to the 5′-triphosphate moiety of viral RNA and 3pRNA and competes with RIG-I-mediated recognition, resulting in decreased type I interferon production. Furthermore, it has been observed that, THGP can directly counteract replication of FluV but not EMCV, by inhibiting the interaction of viral polymerase with RNA genome. Moreover, THGP treatment restored the body weight loss and improved the survival rate of FluV-infected mice, whereas the treatment with THGP itself did not show any toxic effect on survival or the body-weight curves of uninfected mice. Finally, FluV nucleoprotein RNA levels were significantly reduced in the lung tissues of THGP-treated mice, as compared with untreated mice. These results suggest a possible therapeutic implication of THGP that shows direct antiviral action together with a suppressive activity of innate inflammation.

この論文で使われている画像

参考文献

1. Nicholson, L. B. The immune system. Essays in biochemistry 60, 275–301, 2016.

2. Abbas, A.K., Lichtman, A.H., Pillai S. Basic Immunology: Functions and Disorders of the Immune System. Amsterdam: Elsevier, 2016.

3. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. Kuby immunology. New York: W.H. Freeman, 2007.

4. Netea, M.G., Balkwill, F., Chonchol, M., Cominelli, F., Donath, M.Y., Giamarellos- Bourboulis, E.J., Golenbock, D., Gresnigt, M.S., Heneka, M.T., Hoffman, H.M., et al. A guiding map for inflammation. Nat. Immunol. 18, 826-831, 2017.

5. Farber, D., Netea, M., Radbruch, A. et al. Immunological memory: lessons from the past and a look to the future. Nat Rev Immunol. 16, 124–128, 2016.

6. Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B., Schultze, J. L. Innate and Adaptive Immune Memory: An Evolutionary Continuum in the Host’s Response to Pathogens, Cell Host & Microbe 25, 13-26, 2019.

7. Marshall, J.S., Warrington, R., Watson, W. et al. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 14, 49, 2018.

8. Turvey, S.E., Broide, D.H. Innate immunity. J Allergy Clin Immunol. 25, 24–32, 2010.

9. Bonilla, F.A., Oettgen, H.C. Adaptive immunity. J Allergy Clin Immunol.125, 33–40, 2010.

10. Takeuchi, O., Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805- 820, 2010.

11. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. Innate Immunity, 2002.

12. Schroder, K., Tschopp, J. The inflammasomes. Cell 140, 821–32, 2010.

13. Broz, P., Monack, D.M. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol. 13, 551-565, 2013.

14. Kumar, H., Kawai, T., Akira, S. Pathogen recognition by the innate immune system. International Reviews of Immunology 30, 16–34, 2011.

15. Yoneyama, M., and Fujita, T. Structural mechanism of RNA recognition by the RIG-I- like receptors. Immunity 29, 178–181, 2008.

16. Loo, Y.M., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., Akira, S., Gill, M.A., Garcia-Sastre, A., Katze, M.G., Gale, M. J. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82, 335-345, 2008.

17. Satoh, S., Kato, H., Kumagai, Y., Yoneyama, M., Sato, S., Matsushita, K., Tsujimura, T., Fujita, T., Akira, S., Takeuchi, O. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci. 107, 1512-1517, 2010.

18. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.K., Schlee, M. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997, 2006.

19. Pichlmair, A., Schulz, O., Tan, C.P., Naslund, T.I., Liljestrom, P., Weber, F., Sousa C. R. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997-1001, 2006.

20. Kawai, T., Akira. S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131- 137, 2006.

21. Luo, D., Ding, S.C., Vela, A., Kohlway, A., Lindenbach, B.D., Pyle, A.M. Structural insights into RNA recognition by RIG-I. Cell 47, 409–22, 2011.

22. Jiang, F., Ramanathan, A., Miller, M.T., Tang, GQ, Gale, M. Jr., Patel, S.S., et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423–7, 2011.

23. Kowalinski, E., Lunardi, T., McCarthy, A.A., Louber, J., Brunel, J., Grigorov, B., et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423–35, 2011.

24. .Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437,1167–72, 2005.

25. Tan, P., He, L., Cui, J., Qian, C., Cao, X., Lin, M., et al. Assembly of the WHIP-TRIM14- PPP6C mitochondrial complex promotes RIG-I-mediated antiviral signaling. Mol Cell. 68, 293–307, 2017.

26. Vallabhapurapu, S., Karin, M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27, 693–733, 2009.

27. Paz, S., Vilasco, M., Werden, S.J., Arguello, M., Joseph-Pillai, D., Zhao, T., et al. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res 21, 895–910, 2011.

28. Newton, K., Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4, a006049, 2012.

29. Paludan, S. R. & Bowie, A. G. Immune sensing of DNA. Immunity 38, 870–880, 2013.

30. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791, 2013.

31. Li, X. D. et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341, 1390–1394, 2013.

32. Zhang, X., Bai, X.C., Chen, Z.J. Structures, and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53, 43–53, 2020.

33. Ouyang, S., Song, X., Wang, Y., Ru, H., Shaw, N., Jiang, Y., Niu, F., Zhu, Y., Qiu, W., Parvatiyar, K., et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36, 1073–86, 2012.

34. Donovan, J., Dufner, M., Korennykh, A. Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc Natl Acad Sci 110, 1652– 7, 2013.

35. Li, X., Shu, C., Yi, G., Chaton, C.T., Shelton, C.L., Diao, J., Zuo, X., Kao, C.C., Herr, A.B, Li, P. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39, 1019–31, 2013.

36. Kranzusch, P.J., Lee, A.S.Y., Wilson, S.C., Solovykh, M.S., Vance, R.E., Berger, J.M., Doudna, J.A. Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell 158, 1011–21, 2014.

37. Martin, M., Hiroyasu, A., Guzman, R.M., Roberts, S.A., Goodman, A.G. Analysis of drosophila STING reveals an evolutionarily conserved antimicrobial function. Cell Rep. 23, 3537–3550, 2018.

38. Saeed, A., Ruan, X., Guan, H., Su, J., Ouyang, S. Regulation of cGAS-mediated immune responses and immunotherapy. Adv Sci (Weinh) 7, 1902599, 2020.

39. Andreeva, L. et al. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders. Nature 549, 394–398, 2017.

40. Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704–709, 2018.

41. Gao, D., Li, T., Li, X.D., Chen, X., Li, Q.Z., Wight-Carter, M., Chen, Z.J. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci. 112, 5699–705, 2015.

42. Luecke, S. et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1707–1715, 2017.

43. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792, 2009.

44. Zhou, W., Whiteley, A.T., de Oliveira Mann, C.C., Morehouse, B.R., Nowak, R.P., Fischer, E.S., Gray, N.S., Mekalanos, J.J., Kranzusch, P.J. Structure of the human cGAS- DNA complex reveals enhanced control of immune surveillance. Cell 174, 300–311, 2018.

45. Wu, J., Sun, L., Chen, X., Du, F., Shi, H., Chen, C., Chen, Z.J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–30, 2013.

46. Motwani, M., Pesiridis, S., Fitzgerald, K.A. DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet. 20, 657–74, 2019.

47. Srikanth, S., Woo, J.S., Wu, B., El-Sherbiny, Y.M., Leung, J., Chupradit, K., Rice, L., Seo, G.J., Calmettes, G., Ramakrishna, C., et al. The Ca (2+) sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol. 20, 152–62, 2019.

48. Ramanjulu, J.M., Pesiridis, G.S., Yang, J., Concha, N., Singhaus, R., Zhang, S.Y., Tran, J.L., Moore, P., Lehmann, S., Eberl, H.C., et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564, 439–43, 2018.

49. Dobbs, N., Burnaevskiy, N., Chen, D., Gonugunta, V.K., Alto, N.M., Yan, N. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18, 157–68, 2015.

50. Shang, G., Zhang, C., Chen, Z.J., Bai, X.C., Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567, 389–93, 2019.

51. Ergun, S. L., Fernandez, D., Weiss, T. M. & Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178, 290–301, 2019.

52. Mukai, K., Konno, H., Akiba, T., Uemura, T., Waguri, S., Kobayashi, T., Barber, G.N., Arai, H., Taguchi, T. Activation of STING requires palmitoylation at the Golgi. Nat Commun. 7, 11932, 2016.

53. Ablasser, A., Schmid-Burgk, J.L., Hemmerling, I., Horvath, G.L., Schmidt, T., Latz, E., Hornung, V. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503, 530–4, 2013.

54. Ma, Z., Jacobs, S.R., West, J.A., Stopford, C., Zhang, Z., Davis, Z., Barber, G.N., Glaunsinger, B.A., Dittmer, D.P., Damania, B. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci. 112, E4306–15, 2015.

55. Zhu, Y., An, X., Zhang, X., Qiao, Y., Zheng, T., Li, X. STING: a master regulator in the cancer-immunity cycle. Mol Cancer. 18, 152, 2019.

56. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol.12, 959–965, 2011.

57. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004, 2010.

58. Ferguson, B. J., Mansur, D. S., Peters, N. E., Ren, H. W. & Smith, G. L. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. elife1, e00047, 2012.

59. Wang, L., Wen, M. & Cao, X. Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science 365, eaav0758, 2019.

60. Orzalli, M. H., DeLuca, N. A. & Knipe, D. M. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl Acad. Sci. 109, E3008–E3017, 2012.

61. Zhang, Y., Liang, C. Innate recognition of microbial-derived signals in immunity and inflammation. Sci China Life Sci 59, 1210-1217, 2016.

62. Yu, L., Feng, Z. The role of toll-like receptor signaling in the progression of heart failure. Mediators Inflamm 8, 9874109, 2018.

63. Wang, Y., Song, E., Bai, B., Vanhoutte, P.M. Toll-like receptors mediating vascular malfunction: lessons from receptor subtypes. Pharm & Therap. 158, 91-100, 2016.

64. Kawasaki, T., Kawai, T. Toll-like receptor signaling pathways. Front Immunol. 5, 461, 2014.

65. Gao, W., Xiong, Y., Li, Q., Yang, H. Inhibition of Toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front physiol. 8, 508-517, 2017.

66. Jin, M. S. and Lee, J.O. Structures of the Toll-like receptor family and its ligand complexes. Immunity 29, 182–191, 2008.

67. Choe, J., Kelker, M. S. and Wilson, I. A. Structural biology: crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science 309, 5734, 581–585, 2005.

68. Kim, H. M., Park, B. S., Kim, J.I. et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906–917, 2007.

69. Jin, M. S., Kim, S. E., Heo, J. Y. et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071–1082, 2007.

70. Kang, J. Y., Nan, X., Jin, M. S. et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31, 873–848, 2009.

71. Akira, S., & Takeda, K. Toll-like receptor signaling. Nat Rev Immunol 4, 499-511, 2004.

72. Bernard, N. J., O’Neill, L.A. Mal, more than a bridge to MyD88. IUBMB Life 65, 777- 786, 2013.

73. Bryant, C.E., Symmons, M., Gay, N. J. Toll-like receptor signaling through macromolecular protein complexes. Mol Immunol 63, 162-165, 2015.

74. McGettrick, A.F., Brint, E. K., Palsson-McDermott, E.M., et al. TRIF-related adaptor molecule is phosphorylated by PKCε during Toll-like receptor 4 signaling. Proc Natl Acad Sci 103, 9196-9201, 2006.

75. Kollewe, C., Mackensen, A.C., Neumann, D., Knop, J., Cao, P., Li, S., et al. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 279, 5227–36, 2004.

76. Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K., Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22, 7158–67, 2002.

77. Chen, Z.J. (2005) Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol. 7, 758– 765, 2005.

78. Kumar, H., Kawai, T., Akira, S. Pathogen recognition bythe innate immune system. Int Rev Immunol 30, 16-34, 2011.

79. Kawai, T., Akira, S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11, 373–84, 2010.

80. Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, K., & Akira, S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β(TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. Journal of Immunology171, 4304–4310, 2003.

81. Li, Z., Yuan, W., Lin, Z. Functional roles in cell signaling of adaptor protein TRADD from a structural perspective. Comput Struct Biotechnol J. 18, 2867-2876, 2020.

82. H. Hacker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.C, Wang, G.G., Kamps, M.P., Raz, E, Wagner, H., Hacker, G.,et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 439, 204- 207, 2006.

83. Oganesyan, G., Saha, B., Guo, S.K., He, J.Q., Shahangian, A., Zarnegar, B., Perry, G., Cheng, A. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208-211, 2006.

84. Tenoever, B.R., Ng, S.L., Chua, M.A., McWhirter, S.M., Garcia-Sastre, A., Maniatis, T. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 315, 1274-1278, 2007.

85. Emsley, J. Nature's Building Blocks. Oxford: Oxford University Press 506-510, 2001.

86. Teal, G. K. Single Crystals of Germanium and Silicon-Basic to the Transistor and Integrated Circuit. IEEE Transactions on Electron Devices. ED-23 7, 621–639, 1976.

87. Rieke, G.H. Infrared Detector Arrays for Astronomy. Annual Review of Astronomy and Astrophysics 45, 77-115, 2007.

88. Wada, T., Hanyu, T., Nozaki, K., Kataoka, K., Kawatani, T., Asahi, T., and Sawamura N. Antioxidant Activity of Ge-132, a Synthetic Organic Germanium, on Cultured Mammalian Cells. Biol. Pharm. Bull. 41, 749–753, 2018.

89. Tao, S.H., Bolger, P.M. Hazard assessment of germanium supplements. Regul. Toxicol. Pharm. 25, 211–219, 1997.

90. Kolesnikov, S. P. and Nefedov, O. M. Zh. Obshch. Khim. 37, 746, 1967.

91. Menchikov, L.G and Ignateko, M.A. Biological Activity of Organogermanium Compounds (A Review). Pharmaceutical Chemistry Journal 46, 2013.

92. Tsutsui, M., Kakimoto, N., Axtell, D., Oikawa, H., Asai, K. ChemInform Abstract: Crystal structure of ′carboxyethylgermanium sesquioxide. Chemischer Informationsdienst 1977.

93. Tsutsui, M., Kakimoto, N., Axtell, D.D., Oikawa, H., Asai, K. Crystal structure of “carboxyethylgermanium sesquioxide”. J. Am. Chem. Soc. 98, 8287–8289, 1976.

94. Shimada, Y., Sato, K., Tokuji, Y., Nakamura, T. Nuclear magnetic resonance studies of the interactions between the organic germa- nium compound Ge-132 and saccharides. Carbohydr Res 407,10– 15, 2015.

95. Nagasawa, T., Sato, K., Shimada, Y., Kasumi, T. Efficient con- version of D-glucose to D-fructose in the presence of organogermanium compounds. J Appl Glycosci 63, 39–45, 2016.

96. Shimada, Y., Sato, K., Takeda, T., Tokuji Y. The Organogermanium Compound Ge-132 Interacts with Nucleic Acid Components and Inhibits the Catalysis of Adenosine Substrate by Adenosine Deaminase. Biol Trace Elem Res. 181, 164-17, 2018.

97. Nakamura, T., Shimada, Y., Takeda, T., Sato, K., Akiba, M., Fukaya, H. Organogermanium compound, Ge-132, forms complexes with adrenaline, ATP and other physiological cis-diol compounds. Future Med Chem 7, 1233–1246, 2015.

98. Azumi, J., Takeda, T., Shimada, Y., Aso, H., Nakamura, T. The Organogermanium Compound THGP Suppresses Melanin Synthesis via Complex Formation with L-DOPA on Mushroom Tyrosinase and in B16 4A5 Melanoma Cell. Int J Mol Sci. 20, 4785-4798, 2019.

99. Miyao, K. Toxicology and phase I studies on a novel organogermanium compound, Ge-132. Curr. Chemother. Infec. Dis. 2, 1527–1529, 1979.

100. Sugiya, Y., Sakamaki, S., Sugita, T., Abo, Y., Sato, H. Subacute oral toxicity of carboxyethylgermanium sesquioxide (Ge-132) in rats. Ouyou Yakuri. 31, 1181–1190, 1986.

101. Iwadate, K., Yamaguchi, Y., Sasaki, M., Nakatani, M., Doi, Y., Imai, N., Tamano, S., Nishihori, Y. Carcinogenicity study of poly-trans-[(2-carboxyethyl) germasesquioxane] (Ge-132) in F344 rats. Fundam. Toxicol. Sci. 5, 127–140, 2018.

102. Doi, Y., Imai, N., Suguro, M., Numano, T., Furukawa, F. No carcinogenicity of poly- trans-[(2-carboxyethyl) germasesquioxane] (Ge-132): 26-week feeding study using rasH2 mice. Fundam. Toxicol. Sci. 4, 137–150, 2017.

103. Ikemoto, K., Kobayashi, M. Fukumoto, T. et al. 2-Carboxyethylgermanium sesquioxide, a syntrhetic organogermanium compound, as an inducer of contra- suppressor T cells. Experientia 52, 159-166, 1996.

104. Kuwabara, M., Ohba, S., Yukawa, M. Effect of germanium, poly- trans-[2- carboxyethyl] germasesquioxane on natural killer (NK) activity in dogs. J. Vet. Med. Sci., 64, 719–721, 2002.

105. Kobayashi, H., Aso, H., Ishida, N., Maeda, H., Schmitt, D.A., Pollard, R.B., Suzuki, F. Preventive effect of a synthetic immunomodulator, 2-car- boxyethylgermanium sesquioxide, on the generation of suppressor macrophages in mice immunized with allogeneic lymphocytes. Immunopharmacol. Immunotoxicol. 14, 841–864, 1992.

106. Aso, H., Suzuki, F., Ebina, T., Ishida, N. Antiviral activity of carboxy- ethylgermanium sesquioxide (Ge-132) in mice infected with influ- enza virus. J. Biol. Response Mod. 8, 180–189, 1989.

107. Sijpesteijn, A.K., Rijkens, F., Van Der Kerk, G.J., Manten, A. Antimicrobial activity of organogermanium derivatives. Nature 201, 736, 1964.

108. Hachisu, M., Takahashi, H., Koeda, T., Sekizawa, Y. Analgesic effect of novel organogermanium compound, GE-132. J. Pharmacobiodyn. 6, 814–820, 1983.

109. Kumano, N., Ishikawa, T., Koinumaru, S., Kikumoto, T., Suzuki, S., Nakai, Y., Konno, K. Antitumor effect of the organogermanium com- pound Ge-132 on the Lewis lung carcinoma (3LL) in C57BL/6 (B6) mice. Tohoku J. Exp. Med., 146, 97–104, 1985.

110. Mainwaring, M.G., Poor, C., Zander, D.S., Harman, E. Complete remis- sion of pulmonary spindle cell carcinoma after treatment with oral germanium sesquioxide. Chest, 117, 591–593, 2000.

111. Nakamura, T., Saito, M., Aso, H. Effects of a lactobacilli, oligosaccharide, and organic germanium intake on the immune responses of mice. Biosci. Biotechnol. Biochem. 76, 375–377, 2012.

112. Nakamura, T., Takeda, T., Tokuji, Y. The Oral Intake of Organic Germanium, Ge-132, Elevates α-Tocopherol Levels in the Plas-ma and Modulates Hepatic Gene Expression Profiles to Promote Immune Activation in Mice. Int. J. Vitam. Nutr. Res. 84,183–195, 2014.

113. Aso, H., Shibuya, E., Suzuki, F., Nakamura, T., Inoue, H., Ebina, T., Ishida, N. Antitumor effect in mice of an organic germanium compound (Ge-132) when different administration methods are used. Gan Kagaku Ryoho. Cancer Chemother. 12, 2345–2351, 1985.

114. Suzuki, F., Brutkiewicz, R.R., Pollard, R.B. Ability of sera from mice treated with Ge- 132, an organic germanium compound, to inhibit experimental murine ascites tumours. Br. J. Cancer. 52, 757, 1985.

115. Shiwata, Y., Yokochi, S., Suzuki, E., Michishita, H., Tashita, A., Asano, K., Mitani, T., Kurono, M. Effects of proxigermanium on interferon production and 2',5'-oligoadenylate synthetase activity in the lung of influenza virus-infected mice and in virus-infected human peripheral blood mononuclear cell cultures. Arzneimittelforschung 40, 896-9, 1990.

116. Hirayama, C., Suzuki, H., Ito, M., Okumura, M., Oda, T. Propagermanium: a nonspecific immune modulator for chronic hepatitis B. J Gastroenterol 38, 525-32, 2003.

117. Ishiwata, Y., Suzuki, E., Yokochi, S., Otsuka, T., Tasaka, F., Usuda, H., Mitani, T. Studies on the antiviral activity of propagermanium with immunostimulating action. Arzneimittelforschung. 44, 357-61, 1994. PMID: 8192703.

118. Bernard, J.J., Cowing-Zitron, C., Nakatsuji, T., Muehleisen, B., Muto, J., Borkowski, A.W., et al. Ultraviolet radiation damages self-noncoding RNA and is detected by TLR3. Nat Med 18,1286–90, 2012.

119. Takemura, N., Kawasaki, T., Kunisawa, J., Sato, S., Lamichhane, A., Kobiyama, K., et al. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nat Commun 5, 3492, 2014.

120. Akira, S., Uematsu, S., Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801, 2006.

121. Guiducci, C., Gong, M., Cepika, A.M., Xu, Z., Tripodo, C., Bennett, L., et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210, 2903–19, 2013.

122. Andrade, W.A., Souza Mdo, C., Ramos-Martinez, E., Nagpal, K., Dutra, M.S., Melo, M.B., et al. Combined action of nucleic acid-sensing toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe 13, 42–53, 2013.

123. Li, X.D., Chen, Z.J. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. eLife 1, e00102, 2012.

124. Oldenburg, M., Kruger, A., Ferstl, R., Kaufmann, A., Nees, G., Sigmund, A., et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337,1111–5, 2012.

125. Schlee, M. Master sensors of pathogenic RNA-RIG-I like receptors. Immunobiology 218, 1322-1335, 2013.

126. Furr, S.R., Chauhan, V.S., Moerdyk-Schauwecker, M.J., and Marriott, I. A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. J Neuroinflammation 8, 99, 2011.

127. DeFilippis, V.R., Alvarado, D., Sali, T., Rothenburg, S., and Fruh, K. Human cytomegalovirus induces the interferon response via the DNA sensor ZBP1. J Virol 84, 585-598, 2010.

128. Takaoka, A., Wang, Z., Choi, M.K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., Ohba, Y., and Taniguchi, T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501-505, 2007.

129. Wang, Z., Choi, M.K., Ban, T., Yanai, H., Negishi, H., Lu, Y., Tamura, T., Takaoka, A., Nishikura, K., and Taniguchi, T. Regulation of innate immune responses by DAI(DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci 105, 5477-5482 2008.

130. Rebsamen, M., Heinz, L.X., Meylan, E., Michallet, M.C., Schroder, K., Hofmann, K., Vazquez, J., Benedict, C.A., and Tschopp, J. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep 10, 916-922, 2009.

131. Sun, L., Wu, J., Du, F., Chen, X., and Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786-791, 2013.

132. Burdette, D.L., Monroe, K.M., Sotelo-Troha, K., Iwig, J.S., Eckert, B., Hyodo, M., Hayakawa, Y., and Vance, R.E. STING is a direct innate immune sensor of cyclic di- GMP. Nature 478, 515-518, 2011.

133. Zhang, X., Shi, H., Wu, J., Zhang, X., Sun, L., Chen, C., and Chen, Z.J. Cyclic GMP- AMP containing mixed phosphdiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 51, 226-235, 2013.

134. Leonard, D., Eloranta, M.L., Hagberg, N., et al. Activated T cells enhance interferon-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann Rheum Dis 75, 1728–34, 2016.

135. Crouse, J., Kalinke, U., Oxenius, A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol 15, 231–42, 2015.

136. Kiefer, K., Oropallo, M.A., Cancro, M.P., et al. Role of type I interferons in the activation of autoreactive B cells. Immunol Cell Biol 90, 498–504, 2012.

137. Fabre, A., Bourgeois, P., Coste, M.E., Roman, C., Barlogis, V., Badens, C. Management of syndromic diarrhea/tricho-hepato-enteric syndrome: A review of the literature. Intractable Rare Dis Res. 6, 152-157, 2017.

138. Fabre, A., Martinez-Vinson, C., Goulet, O., Badens, C. Syndromic diarrhea/Tricho- hepato-enteric syndrome. Orphanet J Rare Dis. 8, 5, 2013.

139. Stankler, L., Lloyd, D., Pollitt, R.J., Gray, E.S., Thom, H.A., Russell, G.E. Unexplained diarrhea and failure to thrive in 2 siblings with unusual facies and abnormal scalp hair shafts: A new syndrome. Arch. Dis. Child. 57, 212–216, 1982.

140. Goulet, O., Vinson, C., Roquelaure, B., Brousse, N., Bodemer, C., Cézard, J. Syndromic (phenotypic) diarrhea in early infancy. Orphanet J. Rare Dis. 3, 6, 2008.

141. Fabre, A., Charroux, B., Martinez-Vinson, C., Roquelaure, B., Odul, E., Sayar, E., Smith, H., Colomb, V., Andre, N., Hugot, J.P., et al. SKIV2L Mutations Cause Syndromic Diarrhea, or Trichohepatoenteric Syndrome. Am. J. Hum. Genet. 90, 689–692, 2012.

142. Eckard, S.C., Rice, G.I., Fabre, A., Badens, C., Gray, E.E., Hartley, J.L., Crow, Y.J., Stetson, D.B. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol. 15, 839-845, 2014.

143. Reid, A. H., & Tautenberger, J. K. The origin of the 1918 pandemic influenza virus: A continuing enigma. Journal of General Virology 84, 2285–2292, 2003.

144. te Velthuis, A.J., Fodor, E. Influenza virus RNA polymerase: Insights into the mechanisms of viral RNA synthesis. Nature Reviews Microbiology 14, 479-493, 2016.

145. Palese, P., Shaw, M.L. Orthomyxoviridae: The Viruses and their Replication. In. Fields Virology Philadelphia: Lippincott Williams & Wilkins, 2007.

146. Lamb, R.A., Lai, C.J., Choppin, P.W. Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc Natl Acad Sci. 78, 4170-4, 1981.

147. Kochs, G., García-Sastre, A., Martínez-Sobrido, L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol. 81, 7011-21, 2007.

148. Briedis, D.J., Lamb, R.A. Influenza B virus genome: sequences and structural organization of RNA segment 8 and the mRNAs coding for the NS1 and NS2 proteins. J Virol. 42, 186-93, 1982.

149. Wandzik, J.M., Kouba, T., Karuppasamy, M., Pflug, A., Drncova, P., Provaznik, J., Azevedo, N., Cusack, S. A structure-based model for the complete transcription cycle of influenza polymerase. Cell 181, 877–893.e21, 2020.

150. Pflug, A., Guilligay, D., Reich, S., Cusack, S. Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516, 355–360, 2014.

151. Gultyaev, A.P., Fouchier, R.A.M., Olsthoorn, R.C.L. Influenza virus RNA structure: Unique and common features. Int. Rev. Immunol. 29, 533–556, 2010.

152. Zhang, X., Green, T.J., Tsao, J., Qiu, S., Luo, M. Role of intermolecular interactions of vesicular stomatitis virus nucleoprotein in RNA encapsidation. J Virol 82, 674–682, 2008.

153. Ball, L.A., White, C.N. Order of transcription of genes of vesicular stomatitis virus. Proc. Natl. Acad. Sci. 73, 442–446, 1976.

154. Pattnaik, A.K., et al. Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication. J Virol. 71, 8167–8175, 1997.

155. Ogino, T., Banerjee, A.K. Unconventional mechanism of mRNA capping by the RNA- dependent RNA polymerase of vesicular stomatitis virus. Mol. Cell 25, 85–97, 2007.

156. Qanungo, K.R., Shaji, D., Mathur, M., Banerjee, A.K. Two RNA polymerase complexes from vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA. Proc. Natl. Acad. Sci. 101, 5952–5957, 2004.

157. Carocci, M., Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence 3, 351-67, 2012.

158. Hruby, D.E., Roberts, W.K. Encephalomyocarditis virus RNA. III. Presence of a genome-associated protein. J Virol. 25, 413-5, 1978.

159. Palmenberg, A.C., Kirby, E.M., Janda, M.R., Drake, N.L., Duke, G.M., Potratz, K.F., et al. The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Res. 12, 2969–85, 1984.

160. Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian, J.H., Pei, Y.Y., Yuan, M.L., Zhang, Y.L., Dai, F.H., Liu, Y., Wang, Q.M., Zheng, J.J., Xu, L., Holmes, E.C., Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269, 2020.

161. Naqvi, A., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et biophysica acta. Molecular basis of disease 1866, 165878, 2020.

162. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382, 727–33, 2020.

163. Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., et al. Genome composition and divergence of the novel coronavirus (2019- nCoV) originating in China. Cell Host Microbe. 27, 325–8, 2020.

164. Gordon, D.E., Jang, G.M., Bouhaddou, M. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468, 2020.

165. Kim, D., Lee, J.Y., Yang, J.S., Kim, J.W., Kim, V.N., Chang, H. The Architecture of SARS-CoV-2 Transcriptome. Cell 181, 914-921.e10, 2020.

166. Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 180, 1-12, 2020.

167. Maio, D. F., Cascio, L. E., Babini, G., Sali, M., Della, L. S., Tilocca, B., Roncada, P., Arcovito, A., Sanguinetti, M., Scambia, G., Urbani, A. Improved binding of SARS-CoV- 2 envelope protein to tight junction-associated PALS1 could play a key role in COVID- 19 pathogenesis. Microbes Infect 2020.

168. Lucchese, G. Epitopes for a 2019-nCoV vaccine. Cell Mol Immunol. 17, 539–40, 2020.

169. McBride, R., Van, Z. M., Fielding, B.C. The coronavirus nucleocapsid is a multifunctional protein. Viruses 6, 2991–3018, 2014.

170. Uchida, L., Espada-Murao, L.A., Takamatsu, Y., Okamoto, K., Hayasaka, D., Yu, F., Nabeshima, T., Buerano, C.C., Morita, K. The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep. 4, 7395, 2014.

171. Neufeldt, C.J., Joyce, M.A., Van Buuren, N., Levin, A., Kirkegaard, K., Gale, M., Jr., Tyrrell, D.L., Wozniak, R.W. The hepatitis C virus-induced membranous web and associated nuclear transport machinery limit access of pattern recognition receptors to viral replication sites. PLoS Pathog. 12, e1005428, 2016.

172. Decroly, E., Debarnot, C., Ferron, F. et al. Crystal structure and functional analysis of the SARS-Coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLOS Pathog. 7, e 1002059, 2011.

173. Deng, X., Hackbart, M., Mettelman, R.C. et al. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc Natl Acad Sci USA, 114, 4251-60, 2017.

174. Shih, S.R., Krug, R.M. Surprising function of the three influenza viral polymerase proteins: selective protection of viral mRNAs against the cap-snatching reaction catalyzed by the same polymerase proteins. Virology 226, 430-435, 1996.

175. Pathak, H.B., Arnold, J.J., Wiegand, P.N., Hargittai, M.R., and Cameron, C.E. Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. J Biol Chem 282, 16202-16213, 2007.

176. Habjan, M., Andersson, I., Klingström, J., Schümann, M., Martin, A., Zimmermann, P., Wagner, V., Pichlmair, A., Schneider, U., Mühlberger, E., Mirazimi, A., and Weber, F. Processing of genome 5’ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One 3, e2032, 2008.

177. Y an, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A., and Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11, 1005-1013, 2010.

178. Hastie, K.M., Kimberlin, C.R., Zandonatti, M.A., MacRae, I.J., and Saphire, E.O. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A 108, 2396-2401, 2011.

179. Feng, Q., Langereis ,M.A., Lork, M., Nguyen ,M., Hato, S.V., Lanke, K., Emdad, L., Bhoopathi, P., Fisher ,P.B., Lloyd, R.E. Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J Virol. 88, 3369–3378, 2014.

180. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., Bartenschlager, R., Tschopp, J. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature.437,1167–1172, 2005.

181. Li, K., Foy, E., Ferreon, J.C., Nakamura, M., Ferreon, A.C., Ikeda, M., Ray, S.C., Gale, M., Jr., Lemon, S.M. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A. 102,2992–2997,2005.

182. Pan, S., Liu, X., Ma, Y., Cao, Y. & He, B. Herpes simplex virus 1 gamma134.5 protein inhibits STING activation that restricts viral replication. J. Virol. 92, 2018.

183. Thomsen, M.K., Nandakumar, R., Stadler, D. et al. Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology, 64, 746-459, 2016.

184. Zheng, Y., Liu, Q., Wu, Y., et al. Zika virus elicits inflammation to evade antiviral response by cleaving cGAS via NS1-caspase-1 axis. EMBO.J, 37 e99347, 2018.

185. Biolatti, M., Oste, D., Pautasso, S., Gugliesi, F., Von Einem, J., Krapp, C., Jakobsen, M.R., Borgogna, C., Gariglio, M., Andrea De, M., et al. Human cytomegalovirus tegument protein pp65 (pUL83) Dampens type I interferon production by inactivating the DNA sensor cGAS without affecting STING. J Virol, 92, 1-18, 2018.

186. Gack, M.U., Albrecht, R.A., Urano, T., Inn, K.S., Huang, I.C., Carnero, E., Farzan, M., Inoue, S., Jung, J.U., Garcia-Sastre, A. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 5, 439–449, 2009.

187. Yu, C.Y., Liang, J.J., Li, J.K., Lee, Y.L., Chang, B.L., Su, C.I., Huang, W.J., Lai, M.M., Lin, Y.L. Dengue virus impairs mitochondrial fusion by cleaving mitofusins. PLoS Pathog. 11, e1005350, 2015.

188. Prins, K.C., Cardenas, W.B., Basler, C.F. Ebola virus protein VP35 impairs the function of interferon regulatory factor-activating kinases IKKepsilon and TBK-1. J Virol. 83,3069–3077, 2009.

189. Xiang, Z., Liu, L., Lei, X., Zhou, Z., He, B., Wang, J. 3C protease of enterovirus D68 inhibits cellular defense mediated by interferon regulatory factor 7. J Virol. 90,1613– 1621, 2015.

190. Stone, A.E., Mitchell, A., Brownell, J., Miklin, D.J., Golden-Mason, L., Polyak S.J., Gale M.J., Jr., Rosen H.R. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and signal transducer and activator of transcription (STAT) 1 protein expression. PLoS One. 9, e95627, 2014.

191. Gambaryan, A.S., Tuzikov, A.B., Piskarev, V.E., Yamnikova, S.S., Lvov, D.K., Robertson, J.S., Bovin, N.V., Matrosovich, M.N. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 232, 345-350, 1997.

192. Ito, T., Kawaoka, Y. Host-range barrier of influenza A viruses. Vet Microbiol. 74, 71- 75, 2000.

193. Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M.R., Donatelli, I., Kawaoka, Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 74, 8502-8512, 2000.

194. Connor, R.J., Kawaoka, Y., Webster, R.G., Paulson, J.C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205, 17-23, 1994.

195. Skehel, J.J., Wiley, D.C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 69, 531-569, 2000.

196. Martin K, Helenius A: Transport of incoming influenza virus nucleocapsids into the nucleus. J Virol. 1991, 65 (1): 232-244.

197. Martin, K., Helenius, A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67, 117-130, 1991.

198. Whittaker, G., Bui, M., Helenius, A. Nuclear trafficking of influenza virus ribonuleoproteins in heterokaryons. J Virol. 70, 2743-2756, 1996.

199. Wang, P., Palese, P., O’Neill, R.E. The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol. 71, 1850-1856, 1997.

200. Neumann, G., Brownlee, G.G., Fodor, E., Kawaoka, Y. Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol. 283, 121-143, 2004.

201. Li, M.L., Rao, P., Krug, R.M. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J. 20, 2078–2086, 2001.

202. Poon, L.L., Pritlove, D.C., Fodor, E., Brownlee, G.G. Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol. 73, 3473-3476, 1999.

203. Katze, M.G., DeCorato, D., Krug, R.M. Cellular mRNA translation is blocked at both initiation and elongation after infection by influenza virus or adenovirus. J Virol. 60, 1027-1039, 1986.

204. Wagner, R., Matrosovich, M., Klenk, H.D. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol. 12, 59-166, 2002.

205. Leser, G.P., Lamb, R.A. Influenza virus assembly and budding in raft-derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins. Virology 342, 215-227, 2005.

206. Hutchinson, E.C., von Kirchbach, J.C., Gog, J.R., Digard, P. Genome packaging in influenza A virus. J Gen Virol. 91, 313-328, 2010.

207. Webster, R.G., Braciale, T.J., Monto, A.S., Lamb, R.A. Textbook of influenza. 2nd edition. ed. Chichester, West Sussex, UK; Hoboken, NJ: Wiley-Blackwell 502, 2013.

208. Zangrillo, A., Biondi-Zoccai, G., Landoni, G., Frati, G., Patroniti, N., Pesenti, A., et al. Extracorporeal membrane oxygenation (ECMO) in patients with H1N1 influenza infection: a systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO. Crit Care. 17, R30, 2013.

209. Kadoglou, N.P.E., Bracke, F., Simmers, T., Tsiodras, S., Parissis, J. Influenza infection and heart failure-vaccination may change heart failure prognosis? Heart Fail Rev. 22, 329–36, 2017.

210. Kwong, J.C., Schwartz, K.L., Campitelli, M.A. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 378, 2540–1, 2018.

211. Cardani, A., Boulton, A., Kim, T.S., Braciale, T.J. Alveolar macrophages prevent lethal influenza pneumonia by inhibiting infection of type-1 alveolar epithelial cells. PLoS Pathog. 13, e1006140, 2017.

212. Teijaro, J.R., Walsh, K.B., Cahalan, S., Fremgen, D.M., Roberts, E., Scott, F., et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980–91, 2011.

213. Boyd, D.F., Thomas, P.G. Towards integrating extracellular matrix and immunological pathways. Cytokine 98, 79–86, 2017.

214. Florescu, D.F., Kalil, A.C. The complex link between influenza and severe sepsis. Virulence 5, 137–42, 2014.

215. Okuno, H., Yahata, Y., Tanaka-Taya, K., Arai, S., Satoh, H., Morino, S., et al. Characteristics and outcomes of Influenza-associated encephalopathy cases among children and adults in Japan, 2010-2015. Clin Infect Dis. 66, 1831–7, 2018.

216. Sellers, S.A., Hagan, R.S., Hayden, F.G., Fischer, W.A. The hidden burden of influenza: a review of the extra-pulmonary complications of influenza infection. Influenza Other Respir Viruses 11, 372–93, 2017.

217. Krammer, F., Smith, G.J.D., Fouchier, R.A.M. et al. Influenza. Nat Rev Dis Primers 4, 3, 2018.

218. Yan, N., Chen, Z.J. Intrinsic antiviral immunity. Nature Immunol. 13, 214-222, 2012.

219. Le Goffic, R., Balloy, V., Lagranderie, M., Alexopoulou, L., Escriou, N., Flavell, R., Chignard, M., Si-Tahar, M. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2, e53, 2006.

220. Guillot, L., Le Goffic, R., Bloch, S., Escriou, N., Akira, S., Chignard, M, Si-Tahar, M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 280, 5571-5580, 2005.

221. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S., Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529-1531, 2004.

222. Lund, J.M., Alexopoulou, L., Sato, A., Karow, M., Adams, N.C., Gale, N.W., Iwasaki, A., Flavell, R.A. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101, 5598-5603, 2004.

223. Kato, H., Takeuchi, O., Sato, S., Yoneyama, M., Yamamoto, M., Matsui, K., Uematsu, S., Jung, A., Kawai, T., Ishii, K.J. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105, 2006.

224. Opitz, B., Rejaibi, A., Dauber, B., Eckhard, J., Vinzing, M., Schmeck, B., Hippenstiel, S., Suttorp, N., Wolff, T. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 9, 930-938, 2007.

225. Le Goffic, R., Pothlichet, J., Vitour, D., Fujita, T., Meurs, E., Chignard, M., Si-Tahar, M. Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I- dependent antiviral responses in human lung epithelial cells. J Immunol. 178, 3368-3372, 2007.

226. Ichinohe, T., Pang, I.K., Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nature Immunol. 11, 404-410, 2010.

227. Thomas, P.G., Dash, P., Aldridge, J.R., Ellebedy, A.H., Reynolds, C., Funk, A.J., Martin, W.J., Lamkanfi, M., Webby, R.J., Boyd, K.L. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase 1. Immunity 30, 566-575, 2009.

228. Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R., Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 206, 79-87, 2009.

229. Allen, I.C., Scull, M.A., Moore, C.B., Holl, E.K., McElvania-TeKippe, E., Taxman, D.J., Guthrie, E.H., Pickles, R.J., Ting, J.P. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556-565, 2009.

230. Li, S., Min, J. Y., Krug, R. M. & Sen, G. C. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349, 13–2, 2006.

231. Min, J. Y. & Krug, R. M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc. Natl Acad. Sci. USA 103, 7100–7105, 2006.

232. Zhao, C., Hsiang, T.Y., Kuo, R.L., Krug, R.M. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc Natl Acad Sci USA. 107, 2253- 2258, 2010.

233. Conenello, G. M. & Palese, P. Influenza A virus PB1-F2: a small protein with a big punch. Cell Host Microbe 2, 207–209, 2007.

234. Varga, Z.T., Ramos, I., Hai, R., Schmolke, M., Garcia-Sastre, A., Fernandez-Sesma, A., Palese, P. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog. 7, e1002067, 2011.

235. Graef, K. M. et al. The PB2 subunit of the influenza virus RNA polymerase affects virulence by interacting with the mitochondrial antiviral signaling protein and inhibiting expression of beta interferon. J. Virol. 84, 8433–8445, 2010.

236. Sato, S., Li, K., Kameyama, T., Hayashi, T., Ishida, Y., Murakami, S., Watanabe, T., Iijima, S., Sakurai, Y., Watashi, K., Tsutsumi, S., Sato, Y., Akita, H., Wakita, T., Rice, C.M., Harashima, H., Kohara, M., Tanaka, Y., Takaoka, A. The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus. Immunity 42, 123–132, 2015.

237. Yamada, T., Horimoto, H., Kameyama, T., Hayakawa, S., Yamato, H., Dazai, M., Takada, A., Kida, H., Bott, D., Zhou, A.C., Hutin, D., Watts, T.H., Asaka, M., Matthews, J., Takaoka, A. (2016). Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat Immunol. 17, 687-694, 2016.

238. Suzuki, H., Kameyama, T., Takaoka, A. BinCARD2 as a positive regulator of interferon response in innate immunity. Biochem Biophys Res Commun. 511, 287-293, 2019.

239. Sato, S., Li, K., Sakurai, N., Hashizume, M.., Baidya, S., Nonaka, H., Noguchi, K., Ishikawa, K., Obuse, C., Takaoka, A. Regulation of an adaptor protein STING by Hsp90β to enhance innate immune responses against microbial infections. Cell Immunol. 356, 104188, 2020.

240. Kubota, T. et al. Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. J.Biol.Chem. 283, 25660– 25670, 2008.

241. Ozawa, M., Fujii, K., Muramoto, Y., Yamada, S., Yamayoshi, S., Takada, A., Goto, H., Horimoto, T., Kawaoka, Y. Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication. J. Virol. 81, 30–41, 2007.

242. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, 2013.

243. Onomoto, K., Onoguchi, K. & Yoneyama, M. Regulation of RIG-I-like receptor- mediated signaling interaction between host and viral factors. Cell Mol Immunol 18, 539– 555, 2021.

244. Rehwinkel, J., Gack, M.U. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20, 537–551, 2020.

245. Muramoto, Y., Noda, T., Kawakami, E., Akkina, R., & Kawaoka, Y. Identification of novel influenza A virus proteins translated from PA mRNA. Journal of virology 87, 2455–2462, 2013.

246. Lee, M. T., Bishop, K., Medcalf, L., Elton, D., Digard, P., & Tiley, L. Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase. Nucleic acids research 30, 429–438, 2002.

247. Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, K., Akira, S., Fujita, T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 5, 730-737, 2004.

248. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., Taira, K., Foy, E., Loo, Y.M., Gale, M. Jr, Akira, S., Yonehara, S., Kato, A., Fujita, T. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 175, 2851-2858, 2005.

249. Romano, M., Ruggiero, A., Squeglia, F., Maga, G., & Berisio, R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis. Cells 9, 1267, 2020.

250. Matsuoka, Y., Matsumae, H., Katoh, M. et al. A comprehensive map of the influenza A virus replication cycle. BMC Syst Biol 7, 97, 2013.

251. Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., & Katze, M. G. Into the eye of the cytokine storm. Microbiology and molecular biology reviews 76, 16– 32, 2012.

252. Weber, M., Gawanbacht, A., Habjan, M., Rang, A., Borner, C., Schmidt, A. M., Veitinger, S., Jacob, R., Devignot, S., Kochs, G., García-Sastre, A., & Weber, F. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell host & microbe, 13, 336–346, 2013.

253. Verbruggen, P., Ruf, M., Blakqori, G., Overby, A.K., Heidemann, M., Eick, D., Weber, F. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II. J Biol Chem. 286, 3681–3692, 2011.

254. Santhakumar, D., Rohaim, M., Hussein, H. A., Hawes, P., Ferreira, H. L., Behboudi, S., Iqbal, M., Nair, V., Arns, C. W., & Munir, M. Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Scientific reports, 8, 6794, 2018.

255. Alison, M. K. and Michael, G. Jr. RIG-I in RNA virus recognition. Virology, 479, 110– 121, 2015.

256. Kolakofsky, D. Isolation and characterization of Sendai virus DI-RNAs. Cell, 8:547– 555, 1976.

257. Rehwinkel, J. et al. RIG-I Detects Viral Genomic RNA during Negative-Strand RNA Virus Infection. Cell, 140, 397–408, 2010.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る