リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Topochemistry of the Delignification of Japanese Beech (Fagus crenata) Wood by Supercritical Methanol Treatment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Topochemistry of the Delignification of Japanese Beech (Fagus crenata) Wood by Supercritical Methanol Treatment

Takada, Masatsugu Minami, Eiji Kawamoto, Haruo 京都大学 DOI:10.1021/acsomega.1c02345

2021.08

概要

The topochemistry of Japanese beech (Fagus crenata) wood delignification was evaluated in this study following a supercritical methanol treatment (270 °C, 27 MPa). Ultraviolet microscopic analysis of the insoluble residue revealed that the lignin in the secondary wall was easily decomposed and removed because of the preferential cleavage of ether-type linkages. In contrast, the middle lamella lignin was initially resistant to supercritical methanol but eventually decomposed and was removed. In addition, UV-absorbing secondary products formed selectively inside the parenchyma cells. Results from the supercritical methanol treatment of demineralized beech wood indicated that inorganic substances in the lumen of parenchyma affected the formation of these secondary products, thus leading to an overestimation of the residual lignin. Therefore, the topochemistry of delignification was more precisely evaluated when using demineralized beech wood.

この論文で使われている画像

参考文献

(1) Ando, H.; Sakaki, T.; Kokusho, T.; Shibata, M.; Uemura, Y.;

Hatate, Y. Decomposition Behavior of Plant Biomass in HotCompressed Water. Ind. Eng. Chem. Res. 2000, 39, 3688−3693.

(2) Rogalinski, T.; Ingram, T.; Brunner, G. Hydrolysis of

Lignocellulosic Biomass in Water under Elevated Temperatures and

Pressures. J. Supercrit. Fluids 2008, 47, 54−63.

(3) Erdocia, X.; Prado, R.; Corcuera, M. Ã .; Labidi, J. Influence of

Reaction Conditions on Lignin Hydrothermal Treatment. Front.

Energy Res. 2014, 2, 1−7.

(4) Liu, C.; Wyman, C. E. The Effect of Flow Rate of Compressed

Hot Water on Xylan, Lignin, and Total Mass Removal from Corn

Stover. Ind. Eng. Chem. Res. 2003, 42, 5409−5416.

(5) Tirtowidjojo, S.; Sarkanen, K. V.; Pla, F.; McCarthy, J. L.

Kinetics of Organosolv Delignification in Batch- and Flow-through

Reactors. Holzforschung 1988, 42, 177−183.

(6) Zhang, B.; Huang, H.-J.; Ramaswamy, S. Reaction Kinetics of the

Hydrothermal Treatment of Lignin. Appl. Biochem. Biotechnol. 2008,

147, 119−131.

(7) Takada, M.; Rabemanolontsoa, H.; Minami, E.; Saka, S.

Characterization of Lignin-Derived Products from Various Lignocellulosics as Treated by Semi-Flow Hot-Compressed Water. J. Wood

Sci. 2018, 64, 802−809.

(8) Mishra, G. Thermo-Chhemical Conversion of Japanese Beech by

Subcritical Phenols to Bio-Fuels and Bio-Materials; Kyoto University,

2012.

(9) Yamazaki, J.; Minami, E.; Saka, S. Liquefaction of Beech Wood

in Various Supercritical Alcohols. J. Wood Sci. 2006, 52, 527−532.

(10) Minami, E.; Saka, S. Comparison of the decomposition

behaviors of hardwood and softwood in supercritical methanol. J.

Wood Sci. 2003, 49, 0073−0078.

(11) He, L.; Terashima, N. Formation and Structure of Lignin in

Monocotyledons II. Deposition and distribution of phenolic acids and

their association with cell wall polymers in rice plants (Oryza Sativa).

Mokuzai Gakkaishi 1989, 35 (2), 123−129.

(12) Saka, S.; Whiting, P.; Fukazawa, K.; Goring, D. A. I.

Comparative Studies on Lignin Distribution by UV Microscopy and

Bromination Combined with EDXA. Wood Sci. Technol. 1982, 16,

269−277.

(13) Saka, S.; Goring, D. A. I. The Distribution of Lignin in White

Birch Wood as Determined by Bromination with TEM-EDXA.

Holzforschung 1988, 42, 149−153.

(14) Whiting, P.; Goring, D. A. I. The Topochemistry of

Delignification Shown by Pulping Middle Lamella and Secondary

Wall Tissue from Black Spruce Wood. J. Wood Chem. Technol. 1981,

1, 111−122.

(15) Takada, M.; Tanaka, Y.; Minami, E.; Saka, S. Comparative

Study of The Topochemistry on Delignification of Japanese Beech

(Fagus crenata) In Subcritical Phenol and Subcritical Water.

Holzforschung 2016, 70, 1047−1053.

(16) Patwardhan, P. R.; Satrio, J. A.; Brown, R. C.; Shanks, B. H.

Influence of Inorganic Salts on the Primary Pyrolysis Products of

Cellulose. Bioresour. Technol. 2010, 101, 4646−4655.

(17) Raveendran, K.; Ganesh, A.; Khilar, K. C. Influence of Mineral

Matter on Biomass Pyrolysis Characteristics. Fuel 1995, 74, 1812−

1822.

(18) Wang, J.; Asmadi, M.; Kawamoto, H. The Effect of Uronic Acid

Moieties on Xylan Pyrolysis. J. Anal. Appl. Pyrolysis 2018, 136, 215−

221.

(19) Yang, C.; Lu, X.; Lin, W.; Yang, X.; Yao, J. TG-FTIR Study on

Corn Straw Pyrolysis-Influence of Minerals. Chem. Res. Chin. Univ.

2006, 22, 524−532.

(20) Takada, M.; Chandra, R. P.; Saddler, J. N. The Influence of

Lignin Migration and Relocation during Steam Pretreatment on the

Enzymatic Hydrolysis of Softwood and Corn Stover Biomass

Substrates. Biotechnol. Bioeng. 2019, 116, 2864−2873.

(21) Aulin-erdtman, G.; Sanden, R. Spectrographic Contributions to

Lignin Chemistry. IX. Absorption Properties of Some 4-Hydroxyphenyl, Guaiacyl, and 4-Hydroxy-3,5-Dimethoxyphenyl Type Model

20930

https://doi.org/10.1021/acsomega.1c02345

ACS Omega 2021, 6, 20924−20930

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る