リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Deciphering roles of the ClC chloride channel CLH-1 in salt chemotaxis of C. elegans」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Deciphering roles of the ClC chloride channel CLH-1 in salt chemotaxis of C. elegans

朴, 燦賢 東京大学 DOI:10.15083/0002006470

2023.03.24

概要

論文審査の結果の要旨
氏名



燦賢

(Park Chanhyun)

線虫 Caenorhabditis elegans は、塩濃度などの環境条件を餌の有無と関連付けて記憶し、その
後の探索行動を調節する連合学習を示す。例えば、塩走性学習と呼ばれる行動では、餌がある条件
下で経験した塩(NaCl)濃度に誘引され(餌あり学習)、逆に餌のない条件下で経験した塩濃度
を忌避するようになる(餌なし学習)。塩走性学習の機構は、餌なし学習に関わる因子が明らかに
なってきた一方、餌あり学習の分子メカニズムはあまりわかっていなかった。最近になり、ClC 型
クロライドチャネルをコードする clh-1 遺伝子のミスセンス変異(以下、点変異と記述)が餌あり
学習にのみ異常をもたらすことが示されたが、その詳細は調べられていなかった。本論文は、線虫
の塩走性行動に ClC 型クロライドチャネルが必要であることを示し、その制御メカニズムの解析に
ついて述べられている。
本論文は大きく 3 つの内容からなる。第 1 に、線虫の餌あり塩走性学習に異常をもたらす clh-1
点変異の性質を遺伝学的に解析している。点変異の性質を調べるために、clh-1 遺伝子の欠失変異
体の塩走性表現型を調べた結果、欠失変異体は点変異体とは異なり塩走性に異常を示さなかった。
また、野生型と点変異のヘテロ接合体は正常な塩走性表現型を示し、点変異が潜性であることが示
唆された。一方、点変異型 clh-1 のコピー数が半分になる点変異と欠失変異のヘテロ接合体は、点
変異体より弱い塩走性異常を示した。さらに、野生型線虫に点変異型 clh-1 ゲノム DNA を導入す
ると低塩走性異常がもたらされた。これらの結果から、塩走性に異常をもたらす clh-1 点変異が
neomorphic、もしくは hypermorphic であることが示唆された。
第 2 に、塩走性における CLH-1 の機能を調べている。最初に、CLH-1 が機能する細胞の同定を
試みた。clh-1 点変異体で細胞特異的に野生型 clh-1cDNA を発現させる機能回復実験を行ったとこ
ろ、ASER という味覚神経で行動異常が回復することが判明した。ASER は塩濃度が低下すると活
1

性化され、塩濃度が上昇すると不活性化される塩濃度感覚神経であり、塩走性学習において中枢的
な機能を果たすことが知られている。続けて論文提出者は、アフリカツメガエルの卵母細胞を用い
た電気生理学実験により、点変異が CLH-1 のチャネルの性質に与える影響を調べた。その結果、
野生型と点変異型にはクロライドチャネルとしての性質に大きな差は見られなかった。一方、
ASER の細胞内クロライド濃度変化を観察したところ、clh-1 点変異体は塩濃度低下刺激による細
胞内クロライド濃度の変化が大きかった。さらにカルシウムイメージング実験を行った結果、clh-1
点変異体の ASER は、反復する塩濃度変化刺激に対する細胞の応答性が低下していることが明らか
になった。以上の結果から、塩走性において CLH-1 が ASER で機能し、塩刺激に対する神経応答
の制御かかわっていることが示された。
第 3 に、CLH-1 が線虫の行動にどのように寄与するか調べている。走性行動において、線虫は
klinokinesis と klinotaxis という二つの行動機構を用いることが知られている。klinokinesis では
ピルエットと名付けられた急な方向転換が行われ、その頻度を調節することにより線虫は好ましい
環境へ向かう。一方 klinotaxis では、なだらかで持続的に続くカーブが行われ、その向きおよび曲
率が調節される。塩走性時の行動を解析した結果、clh-1 点変異体はいずれの行動機構についても
著しい異常を示し、clh-1 点変異体が示す塩走性行動異常は klinokinesis と klinotaxis の欠如に起
因することが明らかになった。さらに、ASER のポストシナプス介在神経のひとつで、ピルエット
を制御する AIB についてその神経活動と線虫の行動を同時にイメージングした結果、clh-1 点変異
体は塩濃度上昇刺激に応じた AIB の神経活動や後退行動に異常を示した。これらの結果から、点
変異による CLH-1 の機能変化が神経系の塩刺激に対する応答を阻害し、塩走性行動に異常をもた
らすことが示された。
以上、本研究は線虫 C. elegans の塩走性学習に着目し、clh-1 による制御メカニズムを分子・神
経・行動レベルで解析した。本研究において注目された ClC 型クロライドチャネルは種を越えて保
存されており、動物一般における学習原理の理解の端緒になると期待される。また、ヒト ClC チャ
ネル遺伝子の変異は先天性疾患との関係性が知られている。本研究で見いだされた CLH-1 の機能
に対する理解は、ヒトの神経系における ClC タンパク質の機能の理解や ClC タンパク質がかかわ
る疾患の理解において非常に有用であり、今後の神経科学および医科学へ大きく寄与するものであ
る。
なお、本論文は櫻井祐樹・佐藤博文博士・神田真司准教授・飯野雄一教授・國友博文准教授との
共同研究であるが、論文提出者が主体となって研究を遂行したもので、論文提出者の寄与が十分で
あると判断する。
したがって、博士(理学)の学位を授与できると認める。

2

参考文献

2. Introduction

3. Materials and Methods

4. Results

5. Discussion

6. Conclusion

5 年以内に雑誌等で刊行予定のため非公開

7. Acknowledgement

My deepest gratitude goes to Dr. Hirofumi Kunitomo and Dr. Yuichi Iino for letting me have

great experiences of PhD course in this laboratory. I thank to Dr. Kunitomo for suggesting the

topic of this study and his kind supervision. Dr. Iino has provided me with unstinting

encouragement, creative and comprehensive advice. This study could not have been possible

without generous helps from Dr. Kunitomo and Dr. Iino.

I would like to express my appreciation to Dr. Masahiro Tomioka, Dr. Yu Toyoshima,

Dr. Moonsun Jang and Dr. Hirofumi Sato for their experimental advice and helps. I am grateful

to Mabardi Llian for proofreading, and Manami Kanamori for experimental assistance. I also

thank to other members of the Y. I. laboratory members for helpful comments and discussion. I

thank to Dr. Yoshitaka Oka and Dr. Shinji Kanda for providing electrophysiology setup and

experimental instruction.

I thank to the Caenorhabditis Genetics Center (CGC) and the National Bioresource

Project (NBRP) for C. elegans strains; Dr. Takeshi Ishihara for pDEST-nls-YC2.60; Dr. Chronis

N., Dr. Albrecht D. and Dr. Bargmann C. for design of microfluidics chips.

8. Reference

Accardi, A. (2015) ‘Structure and gating of CLC channels and exchangers.’, The Journal of

physiology, 593(18), pp. 4129–4138. doi: 10.1113/JP270575.

Adachi, T. et al. (2010) ‘Reversal of salt preference is directed by the insulin/PI3K and G q/PKC

signaling in Caenorhabditis elegans’, Genetics. doi: 10.1534/genetics.110.119768.

Adrian, R. H. and Bryant, S. H. (1974) ‘On the repetitive discharge in myotonic muscle fibres’,

The Journal of Physiology. doi: 10.1113/jphysiol.1974.sp010620.

Ahnert-Hilger, G. and Jahn, R. (2011) ‘CLC-3 spices up GABAergic synaptic vesicles’, Nature

Neuroscience. doi: 10.1038/nn.2786.

Albrecht, D. R. and Bargmann, C. I. (2011) ‘High-content behavioral analysis of Caenorhabditis

elegans in precise spatiotemporal chemical environments’, Nature Methods. doi:

10.1038/nmeth.1630.

Bacaj, T. et al. (2008) ‘Glia are essential for sensory organ function in C. elegans.’, Science

(New York, N.Y.), 322(5902), pp. 744–7. doi: 10.1126/science.1163074.

Bargmann, C. I., Hartwieg, E. and Horvitz, H. R. (1993) ‘Odorant-selective genes and neurons

mediate olfaction in C. elegans’, Cell, 74(3), pp. 515–527. doi: 10.1016/0092-8674(93)80053-H.

Bargmann, C. I. and Horvitz, H. R. (1991) ‘Chemosensory neurons with overlapping functions

direct chemotaxis to multiple chemicals in C. elegans’, Neuron, 7(5), pp. 729–742. doi:

10.1016/0896-6273(91)90276-6.

Blanz, J. et al. (2007) ‘Leukoencephalopathy upon disruption of the chloride channel ClC-2’,

Journal of Neuroscience. doi: 10.1523/JNEUROSCI.0338-07.2007.

Blaxter, M. and Denver, D. R. (2012) ‘The worm in the world and the world in the worm’, BMC

Biology. doi: 10.1186/1741-7007-10-57.

Bösl, M. R. et al. (2001) ‘Male germ cells and photoreceptors, both dependent on close cell-cell

interactions, degenerate upon ClC-2 Cl- channel disruption’, EMBO Journal. doi:

10.1093/emboj/20.6.1289.

Branicky, R. et al. (2014) ‘The voltage-gated anion channels encoded by clh-3 regulate egg

laying in C. elegans by modulating motor neuron excitability’, Journal of Neuroscience. doi:

10.1523/JNEUROSCI.3112-13.2014.

Braubach, O. R. et al. (2009) ‘Olfactory conditioning in the zebrafish (Danio rerio)’,

Behavioural Brain Research. doi: 10.1016/j.bbr.2008.10.044.

Brenner, S. (1974) ‘The genetics of Caenorhabditis elegans.’, Genetics, 77(1), pp. 71–94. doi:

10.1002/cbic.200300625.

Chalasani, S. H. et al. (2007) ‘Dissecting a circuit for olfactory behaviour in Caenorhabditis

elegans’, Nature. doi: 10.1038/nature06292.

Charlet-B., N. et al. (2002) ‘Loss of the muscle-specific chloride channel in type 1 myotonic

dystrophy due to misregulated alternative splicing’, Molecular Cell. doi: 10.1016/S10972765(02)00572-5.

Chen, D. Y. et al. (2011) ‘A critical role for IGF-II in memory consolidation and enhancement’,

Nature. doi: 10.1038/nature09667.

Chen, Y. F. et al. (2019) ‘Knockdown of CLC-3 in the hippocampal CA1 impairs contextual fear

memory’, Progress in Neuro-Psychopharmacology and Biological Psychiatry. doi:

10.1016/j.pnpbp.2018.07.004.

Cho, C. E. et al. (2016) ‘Parallel encoding of sensory history and behavioral preference during

Caenorhabditis elegans olfactory learning’, eLife. doi: 10.7554/eLife.14000.

Chronis, N., Zimmer, M. and Bargmann, C. I. (2007) ‘Microfluidics for in vivo imaging of

neuronal and behavioral activity in Caenorhabditis elegans’, Nature Methods. doi:

10.1038/nmeth1075.

Colbert, H. A. and Bargmann, C. I. (1995) ‘Odorant-specific adaptation pathways generate

olfactory plasticity in C. elegans’, Neuron. doi: 10.1016/0896-6273(95)90224-4.

Deidda, G. et al. (2015) ‘Reversing excitatory GABA A R signaling restores synaptic plasticity

and memory in a mouse model of Down syndrome’, Nature Medicine. doi: 10.1038/nm.3827.

Dutzler, R. et al. (2002) ‘X-ray structure of a CIC chloride channel at 3.0 Å reveals the

molecular basis of anion selectivity’, Nature. doi: 10.1038/415287a.

Fahlke, C. et al. (1995) ‘An aspartic acid residue important for voltage-dependent gating of

human muscle chloride channels’, Neuron. doi: 10.1016/0896-6273(95)90050-0.

Félix, M. A. and Duveau, F. (2012) ‘Population dynamics and habitat sharing of natural

populations of Caenorhabditis elegans and C. briggsae’, BMC Biology. doi: 10.1186/1741-700710-59.

Fernandes-Rosa, F. L. et al. (2018) ‘A gain-of-function mutation in the CLCN2 chloride channel

gene causes primary aldosteronism’, Nature Genetics. Springer US, 50(March), pp. 1–7. doi:

10.1038/s41588-018-0053-8.

Gong, J. et al. (2019) ‘A Cold-Sensing Receptor Encoded by a Glutamate Receptor Gene’, Cell.

doi: 10.1016/j.cell.2019.07.034.

Gordus, A. et al. (2015) ‘Feedback from network states generates variability in a probabilistic

olfactory circuit’, Cell. doi: 10.1016/j.cell.2015.02.018.

Gottfried, J. A., O’Doherty, J. and Dolan, R. J. (2003) ‘Encoding predictive reward value in

human amygdala and orbitofrontal cortex’, Science. doi: 10.1126/science.1087919.

Gottschalk, A. et al. (2005) ‘Identification and characterization of novel nicotinic receptorassociated proteins in Caenorhabditis elegans’, EMBO Journal. doi: 10.1038/sj.emboj.7600741.

Govorunova, E. G. et al. (2015) ‘Natural light-gated anion channels: A family of microbial

rhodopsins for advanced optogenetics’, Science. doi: 10.1126/science.aaa7484.

Grant, J., Matthewman, C. and Bianchi, L. (2015) ‘A Novel Mechanism of pH Buffering in C.

elegans Glia: Bicarbonate Transport via the Voltage-Gated ClC Cl- Channel CLH-1’, Journal of

Neuroscience, 35(50), pp. 16377–16397. doi: 10.1523/JNEUROSCI.3237-15.2015.

Gray, J. M., Hill, J. J. and Bargmann, C. I. (2005) ‘A circuit for navigation in Caenorhabditis

elegans’, Proceedings of the National Academy of Sciences of the United States of America. doi:

10.1073/pnas.0409009101.

10

Grimley, J. S. et al. (2013) ‘Visualization of synaptic inhibition with an optogenetic sensor

developed by cell-free protein engineering automation’, Journal of Neuroscience. doi:

10.1523/JNEUROSCI.4616-11.2013.

Hata, Y., Slaughter, C. A. and Südhof, T. C. (1993) ‘Synaptic vesicle fusion complex contains

unc-18 homologue bound to syntaxin’, Nature. doi: 10.1038/366347a0.

Hedgecock, E. M. and Russell, R. L. (1975) ‘Normal and mutant thermotaxis in the nematode

Caenorhabditis elegans’, Proceedings of the National Academy of Sciences of the United States

of America. doi: 10.1073/pnas.72.10.4061.

Hirano, Y. et al. (2013) ‘Fasting launches CRTC to facilitate long-term memory formation in

Drosophila’, Science. doi: 10.1126/science.1227170.

Horikawa, K. et al. (2010) ‘Spontaneous network activity visualized by ultrasensitive Ca 2+

indicators, yellow Cameleon-Nano’, Nature Methods. doi: 10.1038/nmeth.1488.

Iino, Y. and Yoshida, K. (2009) ‘Parallel use of two behavioral mechanisms for chemotaxis in

Caenorhabditis elegans.’, The Journal of neuroscience : the official journal of the Society for

Neuroscience, 29(17), pp. 5370–5380. doi: 10.1523/JNEUROSCI.3633-08.2009.

Iwata, R. et al. (2011) ‘Roles for class IIA phosphatidylinositol transfer protein in

neurotransmission and behavioral plasticity at the sensory neuron synapses of Caenorhabditis

elegans’, Proceedings of the National Academy of Sciences of the United States of America. doi:

10.1073/pnas.1016232108.

Jang, M. S. et al. (2019) ‘Multiple sensory neurons mediate starvation-dependent aversive

navigation in Caenorhabditis elegans’, Proceedings of the National Academy of Sciences of the

United States of America. doi: 10.1073/pnas.1821716116.

Jentsch, T. J. (2007) ‘Chloride and the endosomal-lysosomal pathway: Emerging roles of CLC

chloride transporters’, Journal of Physiology. doi: 10.1113/jphysiol.2006.124719.

Jentsch, T. J. (2008) CLC Chloride Channels and Transporters: From Genes to Protein

Structure, Pathology and Physiology, Critical Reviews in Biochemistry and Molecular Biology.

doi: 10.1080/10409230701829110.

11

Jeworutzki, E. et al. (2014) ‘GlialCAM, a CLC-2 Cl- channel subunit, activates the slow gate of

CLC chloride channels’, Biophysical Journal. doi: 10.1016/j.bpj.2014.07.040.

Kindt, K. S. et al. (2007) ‘Dopamine Mediates Context-Dependent Modulation of Sensory

Plasticity in C. elegans’, Neuron. doi: 10.1016/j.neuron.2007.07.023.

Kunitomo, H. et al. (2013) ‘Concentration memory-dependent synaptic plasticity of a taste

circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.’, Nature

communications. Nature Publishing Group, 4(May), p. 2210. doi: 10.1038/ncomms3210.

Kuramochi, M. and Doi, M. (2019) ‘An excitatory/inhibitory switch from asymmetric sensory

neurons defines postsynaptic tuning for a rapid response to NaCl in Caenorhabditis elegans’,

Frontiers in Molecular Neuroscience. doi: 10.3389/fnmol.2018.00484.

Lewis, J. A. et al. (1980) ‘The genetics of levamisole resistance in the nematode Caenorhabditis

elegans’, Genetics.

Li, Z. et al. (2014) ‘Encoding of both analog- and digital-like behavioral outputs by one C.

Elegans interneuron’, Cell. doi: 10.1016/j.cell.2014.09.056.

Liu, J. et al. (2010) ‘C. elegans phototransduction requires a G protein-dependent cGMP

pathway and a taste receptor homolog’, Nature Neuroscience. doi: 10.1038/nn.2540.

López-Cruz, A. et al. (2019) ‘Parallel Multimodal Circuits Control an Innate Foraging

Behavior’, Neuron. doi: 10.1016/j.neuron.2019.01.053.

Luo, L. et al. (2014) ‘Dynamic encoding of perception, memory, and movement in a C. elegans

chemotaxis circuit’, Neuron. doi: 10.1016/j.neuron.2014.05.010.

Nagashima, T., Iino, Y. and Tomioka, M. (2019) ‘DAF-16/FOXO promotes taste avoidance

learning independently of axonal insulin-like signaling’, PLoS Genetics. doi:

10.1371/journal.pgen.1008297.

Nehrke, K. et al. (2000) ‘Into ion channel and transporter function. Caenorhabditis elegans ClCtype chloride channels: novel variants and functional expression.’, American journal of

physiology. Cell physiology, 279(6), pp. C2052-66. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/11078724.

12

O’Doherty, J. P. et al. (2003) ‘Temporal difference models and reward-related learning in the

human brain’, Neuron. doi: 10.1016/S0896-6273(03)00169-7.

Oda, S., Tomioka, M. and Iino, Y. (2011) ‘Neuronal plasticity regulated by the insulin-like

signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans’, Journal of

Neurophysiology. doi: 10.1152/jn.01029.2010.

Ohno, H. et al. (2014) ‘Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning

response in C. elegans.’, Science, 345(6194), pp. 313–317. doi: 10.1126/science.1250709.

Ohno, H. et al. (2017) ‘Dynamics of Presynaptic Diacylglycerol in a Sensory Neuron Encode

Differences between Past and Current Stimulus Intensity’, Cell Reports. doi:

10.1016/j.celrep.2017.08.038.

Ortiz, C. O. et al. (2009) ‘Lateralized Gustatory Behavior of C. elegans Is Controlled by Specific

Receptor-Type Guanylyl Cyclases’, Current Biology, 19(12), pp. 996–1004. doi:

10.1016/j.cub.2009.05.043.

Otis, J. M. et al. (2017) ‘Prefrontal cortex output circuits guide reward seeking through divergent

cue encoding’, Nature. doi: 10.1038/nature21376.

Pavlov, I. P. (1927) Classics in the History of Psychology -- Pavlov (1927) Lecture 2,

CONDITIONED REFLEXES: AN INVESTIGATION OF THE PHYSIOLOGICAL ACTIVITY OF

THE CEREBRAL CORTEX.

Perkins, L. A. et al. (1986) ‘Mutant sensory cilia in the nematode Caenorhabditis elegans’,

Developmental Biology. doi: 10.1016/0012-1606(86)90314-3.

Petalcorin, M. I. R. et al. (1999) ‘Disruption of clh-1, a chloride channel gene, results in a wider

body of Caenorhabditis elegans’, Journal of Molecular Biology. doi: 10.1006/jmbi.1999.3241.

Pfeffer, C. K. et al. (2009) ‘NKCC1-dependent GABAergic excitation drives synaptic network

maturation during early hippocampal development’, Journal of Neuroscience. doi:

10.1523/JNEUROSCI.1377-08.2009.

13

Pierce-Shimomura, J. T., Morse, T. M. and Lockery, S. R. (1999) ‘The fundamental role of

pirouettes in Caenorhabditis elegans chemotaxis’, Journal of Neuroscience. doi:

10.1523/jneurosci.19-21-09557.1999.

Piggott, B. J. et al. (2011) ‘The neural circuits and synaptic mechanisms underlying motor

initiation in C. elegans’, Cell. doi: 10.1016/j.cell.2011.08.053.

Pristerà, A. et al. (2019) ‘Dopamine neuron-derived IGF-1 controls dopamine neuron firing, skill

learning, and exploration’, Proceedings of the National Academy of Sciences of the United States

of America. doi: 10.1073/pnas.1806820116.

Pusch, M. et al. (1995) ‘Mutations in dominant human myotonia congenita drastically alter the

voltage dependence of the CIC-1 chloride channel’, Neuron. doi: 10.1016/0896-6273(95)900233.

Ratté, S. and Prescott, S. A. (2011) ‘CLC-2 channels regulate neuronal excitability, not

intracellular chloride levels’, Journal of Neuroscience. doi: 10.1523/JNEUROSCI.2748-11.2011.

Rea, S. L. et al. (2005) ‘A stress-sensitive reporter predicts longevity in isogenic populations of

Caenorhabditis elegans’, Nature Genetics. doi: 10.1038/ng1608.

Redemann, S. et al. (2011) ‘Codon adaptation-based control of protein expression in C. elegans’,

Nature Methods. doi: 10.1038/nmeth.1565.

Rhodes, T. H. et al. (1999) ‘A missense mutation in canine ClC-1 causes recessive myotonia

congenita in the dog’, FEBS Letters. doi: 10.1016/S0014-5793(99)00926-6.

Rinke, I., Artmann, J. and Stein, V. (2010) ‘ClC-2 voltage-gated channels constitute part of the

background conductance and assist chloride extrusion’, Journal of Neuroscience. doi:

10.1523/JNEUROSCI.6299-09.2010.

Saeki, S., Yamamoto, M. and Iino, Y. (2001) ‘Plasticity of chemotaxis revealed by paired

presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans’,

Journal of Experimental Biology.

14

Sakurai, Y. (2010) ‘線虫 C. elegans の餌と連合した塩濃度学習の遺伝学的解析 (Genetic

analyses for characterization of the food-associated salt chemotaxis learning mechanism in C.

elegans)’, Master’s thesis, Dept. of Biol. Sci., The Univ. of Tokyo.

Sasakura, H. and Mori, I. (2013) ‘Behavioral plasticity, learning, and memory in C. elegans’,

Current Opinion in Neurobiology. doi: 10.1016/j.conb.2012.09.005.

Satoh, Y. et al. (2014) ‘Regulation of experience-dependent bidirectional chemotaxis by a neural

circuit switch in Caenorhabditis elegans’, Journal of Neuroscience. doi:

10.1523/JNEUROSCI.1757-14.2014.

Schafer, W. R. and Kenyon, C. J. (1995) ‘A calcium-channel homologue required for adaptation

to dopamine and serotonin in Caenorhabditis elegans’, Nature. doi: 10.1038/375073a0.

Schriever, AM. et al. (1999) ‘CLC chloride channels in Caenorhabditis elegans.’, Journal of

Biological Chemistry.

Serrano-Saiz, E. et al. (2013) ‘XModular control of glutamatergic neuronal identity in C. elegans

by distinct homeodomain proteins’, Cell. doi: 10.1016/j.cell.2013.09.052.

Shindou, T. et al. (2019) ‘Active propagation of dendritic electrical signals in C. elegans’,

Scientific Reports. doi: 10.1038/s41598-019-40158-9.

Sieburth, D., Madison, J. M. and Kaplan, J. M. (2007) ‘PKC-1 regulates secretion of

neuropeptides’, Nature Neuroscience. doi: 10.1038/nn1810.

Singhvi, A. et al. (2016) ‘A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape

by Chloride Inhibition of an rGC’, Cell. Elsevier Inc., 165(4), pp. 936–948. doi:

10.1016/j.cell.2016.03.026.

Smith, H. K. et al. (2013) ‘Defining specificity determinants of cGMP mediated gustatory

sensory transduction in Caenorhabditis elegans’, Genetics. doi: 10.1534/genetics.113.152660.

Staley, K. et al. (1996) ‘Alteration of GABA(A) receptor function following gene transfer of the

CLC-2 chloride channel’, Neuron. doi: 10.1016/S0896-6273(00)80186-5.

15

Staley, K. J., Soldo, B. L. and Proctor, W. R. (1995) ‘Ionic mechanisms of neuronal excitation by

inhibitory GABAA receptors’, Science. doi: 10.1126/science.7638623.

Stauber, T., Weinert, T. and Jentsch, T. J. (2012) ‘Cell biology and physiology of CLC chloride

channels and transporters’, Comprehensive Physiology. doi: 10.1002/cphy.c110038.

Stölting, G., Fischer, M. and Fahlke, C. (2014a) ‘ClC-1 and ClC-2 form hetero-dimeric channels

with novel protopore functions’, Pflugers Archiv European Journal of Physiology. doi:

10.1007/s00424-014-1490-6.

Stölting, G., Fischer, M. and Fahlke, C. (2014b) ‘CLC channel function and dysfunction in

health and disease’, Frontiers in Physiology, 5(OCT), pp. 1–18. doi: 10.3389/fphys.2014.00378.

Summers, P. J. et al. (2015) ‘Multiple sensory inputs are extensively integrated to modulate

nociception in C. elegans’, Journal of Neuroscience. doi: 10.1523/JNEUROSCI.0225-15.2015.

Suzuki, H. et al. (2008) ‘Functional asymmetry in Caenorhabditis elegans taste neurons and its

computational role in chemotaxis.’, Nature, 454(7200), pp. 114–7. doi: 10.1038/nature06927.

Thiemann, A. et al. (1992) ‘A chloride channel widely expressed in epithelial and non-epithelial

cells’, Nature. doi: 10.1038/356057a0.

Tomioka, M. et al. (2006) ‘The Insulin/PI 3-Kinase Pathway Regulates Salt Chemotaxis

Learning in Caenorhabditis elegans’, Neuron, 51(5), pp. 613–625. doi:

10.1016/j.neuron.2006.07.024.

Tsalik, E. L. and Hobert, O. (2003) ‘Functional mapping of neurons that control locomotory

behavior in Caenorhabditis elegans’, Journal of Neurobiology. doi: 10.1002/neu.10245.

Ventimiglia, D. and Bargmann, C. I. (2017) ‘Diverse modes of synaptic signaling, regulation,

and plasticity distinguish two classes of C. elegans glutamatergic neurons’, eLife. doi:

10.7554/eLife.31234.

Wang, L. et al. (2017) ‘A gustatory neural circuit of Caenorhabditis elegans generates memorydependent behaviors in Na+ chemotaxis’, Journal of Neuroscience. doi:

10.1523/JNEUROSCI.1774-16.2017.

16

Ware, R. W. et al. (1975) ‘The nerve ring of the nematode Caenorhabditis elegans: Sensory input

and motor output’, Journal of Comparative Neurology. doi: 10.1002/cne.901620106.

White, J. G. et al. (1986) ‘The structure of the nervous system of the nematode Caenorhabditis

elegans.’, Philosophical Transactions of the Royal Society of London, 314(1165), pp. 1–340. doi:

10.1098/rstb.1986.0056.

Winter, Y. and Stich, K. P. (2005) ‘Foraging in a complex naturalistic environment: Capacity of

spatial working memory in flower bats’, Journal of Experimental Biology. doi:

10.1242/jeb.01416.

Wu, F.-F. (2002) ‘Novel CLCN1 mutations with unique clinical and electrophysiological

consequences’, Brain, 125(11), pp. 2392–2407. doi: 10.1093/brain/awf246.

Yamamoto, T. et al. (2015) ‘Single Nucleotide variations in CLCN6 identified in patients with

benign partial epilepsies in infancy and/or febrile seizures’, PLoS ONE. doi:

10.1371/journal.pone.0118946.

Zou, W. et al. (2018) ‘Decoding the intensity of sensory input by two glutamate receptors in one

C. elegans interneuron’, Nature Communications. doi: 10.1038/s41467-018-06819-5.

Zullo, J. M. et al. (2019) ‘Regulation of lifespan by neural excitation and REST’, Nature. doi:

10.1038/s41586-019-1647-8.

17

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る