リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「大腸癌におけるARID1A遺伝子変異の及ぼす影響および間質細胞のPD-L1発現との関連」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

大腸癌におけるARID1A遺伝子変異の及ぼす影響および間質細胞のPD-L1発現との関連

家守, 智大 KAMORI, Tomohiro カモリ, トモヒロ 九州大学

2022.11.30

概要

【背景】
ARID1A蛋白はSWI/SNF複合体の主構成蛋白であり、クロマチンリモデリングを介し遺伝子制御に関わる。卵巣癌において欠失変異が遺伝子変異数を増加させPD-L1発現を増加させたと報告されている。また大腸癌でもTCGAのデータベースで472例中74例(16%)と比較的高頻度にARID1A変異を認め、MSI statusやBRAF mutationとの関連が示されている。しかしARID1A変異が大腸癌の発生や進展に与える影響やPD-L1発現との関連については不明である。

【方法】
TCGAデータベース(276例)および九州大学・新潟大学にて解析された201例の大腸癌のNGS解析データベースを用いてARID1A変異の他の遺伝子に及ぼす影響について解析した。1994年から2015年の期間で九州大学病院 消化器・総合外科にて切除された散発性大腸癌499例でMSI-Hと診断された48例とpropensity scoreマッチングを行ったMSS大腸癌48例の計96例のうち解析可能であった66例を対象としPD-L1およびARID1Aの免疫染色を施行した。

【結果】
本研究データおよびTCGAデータともARID1A遺伝子変異例で非同義変異の頻度が有意に多く、本研究データにおいてARID1A変異例で有意に他の癌関連遺伝子変異の頻度が高かった。そのほか右側結腸におけるARID1A遺伝子変異例はMSI-Hの頻度が有意に高く、ATM遺伝子変異(25%)およびBRAF遺伝子変異(24%)が比較的高頻度に認められた。免疫染色ではARID1A発現消失はMSSの2例(6%)およびMSI-Hの11例(33%)に認めた。腫瘍間質細胞のPD-L1発現頻度はMSI-HとMSS両群においてARID1A発現消失と有意(p=0.02)に相関していた。

【まとめ】
大腸癌においてARID1A変異はMSI-Hに多く、他の癌関連遺伝子変異の頻度も高い傾向にあった。大腸癌の腫瘍間質細胞におけるPD-L1発現ともARID1Aは関連しており、免疫チェックポイント阻害薬のバイオマーカーとなる可能性がある。

この論文で使われている画像

参考文献

1. Saltz LB. Value in colorectal cancer treatment: where it is lacking, and why. Cancer J. 2016;22(3):232-235.

2. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509-2520.

3. Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade– based immunotherapy. Science. 2018; 362(6411):eaar3593.

4. Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of Pembrolizumab in treatment-refractory, microsatellite instability- high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11-19.

5. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182-1191.

6. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:407-422.

7. Nagl NG Jr, Wang X, Patsialou A, Van Scoy M, Moran E. Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 2007;26(3):752-763.

8. Chou A, Toon CW, Clarkson A, et al. Loss of ARID1A expression in colorectal carcinoma is strongly associated with mismatch repair defi- ciency. Hum Pathol. 2014;45(8):1697-1703.

9. Ye J, Zhou Y, Weiser MR, et al. Immunohistochemical detection of ARID1A in colorectalcarcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage. Hum Pathol. 2014;45:2430-2436.

10. Kim Y-S, Jeong H, Choi J-W, Hwa Eun O, Lee J-H. Unique characteristics of ARID1A mutation and protein level in gastric and colorectal cancer: a meta-analysis. Saudi J Gastroenterol. 2017;23(5):268-274.

11. Shen J, Zhenlin J, Zhao W, et al. ARID1A deficiency promotes muta- bility and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat Med. 2018;24(5):556-562.

12. Jiang T, Chen X, Chunxia S, Ren S, Zhou C. Pan-cancer analysis of ARID1A alterations as biomarkers for immunotherapy outcomes. J Cancer. 2020;11(4):776-780.

13. Lin L, Li M, Jiang Z, Wang X. ARID1A mutations are associated with increased immune activity in gastrointestinal cancer. Cell. 2019;8(7):678.

14. Tokunaga R, Xiu J, Goldberg RM, et al. The impact of ARID1A muta- tion on molecular characteristics in colorectal cancer. Eur J Cancer. 2020;140:119-129.

15. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Andy Trotti III. AJCC Cancer Staging Manual. 7th ed. New York: Springer; 2010: 143-159.

16. Nagahashi M, Wakai T, Shimada Y, et al. Genomic landscape of colo- rectal cancer in Japan: clinical implications of comprehensive genomic sequencing for precision medicine. Genome Med. 2016;8:136.

17. Ethan Cerami, Jianjiong Gao, Ugur Dogrusoz, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4

18. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):l1.

19. Cancer Genome Atlas Network. Comprehensive molecular characteri- zation of human colon and Rectal cancer. Nature. 2012;487(7407): 330-337.

20. Toh Y, Oki E, Oda S, et al. An integrated microsatellite length analysis using an automated fluorescent DNA sequencer. Cancer Res. 1996; 56:2688-2691.

21. Oda S, Oki E, Maehara Y, Sugimachi K. Precise assessment of micro- satellite instability using high resolution fluorescent microsatellite analysis. Nucleic Acids Res. 1997;25:3415-3420.

22. Oki E, Oda S, Maehara Y, Sugimachi K. Mutated genespecific pheno- types of dinucleotide repeat instability in human colorectal carcinoma cell lines deficient in DNA mismatch repair. Oncogene. 1999;18:2143- 2147.

23. Takada K, Okamoto T, Shoji F, et al. Clinical significance of PD-L1 protein expression in surgically resected primary lung adenocarci- noma. J Thorac Oncol. 2016;11:1879-1890.

24. Kamran SC, Clark JW, Zheng H, et al. Primary tumor sidedness is an independent prognostic marker for survival in metastatic colorectal cancer: results from a large retrospective cohort with mutational anal- ysis. Cancer Med. 2018;7(7):2934-2942.

25. Corcoran RB, André T, Atreya CE, et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal can- cer. Cancer Discov. 2018;8(4):428-443.

26. Sriramulu S, Ramachandran M, Subramanian S, et al. A review on role of ATM gene in hereditary transfer of colorectal cancer. Acta Biomed. 2018;89(4):463-469.

27. Garcia-Diaz A, Shin DS, Moreno BH, et al. Interferon receptor signal- ing pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017; 19(6):1189-1201.

28. Liu S, Gӧnen M, Stadler ZK, Weiser MR, et al. Cellular localization of PD-L1 expression in mismatch-repairdeficient and proficient colorec- tal carcinomas. Modern Pathol. 2019;32:110-121.

29. Korehisa S, Oki E, Iimori M, et al. Clinical significance of programmed cell death-ligand 1 expression and the immune microenvironment at the invasive front of colorectal cancers with high microsatellite insta- bility. Int J Cancer. 2018;142(4):822-832.

30. Khalique S, Naidoo K, Attygalle AD, et al. Optimised ARID1A immunohistochemistry is an accurate predictor of ARID1A muta- tional status in gynaecological cancers. J Pathol Clin Res. 2018;4(3): 154-166.

31. Büttner R, Gosney JR, Skov BG, et al. Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung cancer. J Clin Oncol. 2017;35(34):3867-3876.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る