リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation

Miyazaki, Ryoji Ai, Mengting Tanaka, Natsuko Suzuki, Takehiro Dhomae, Naoshi Tsukazaki, Tomoya Akiyama, Yoshinori Mori, Hiroyuki 京都大学 DOI:10.1016/j.jbc.2022.102572

2022.11

概要

PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD-YfgM complex formation as well as the molecular mechanisms of PpiD-YfgM and PpiD/YfgM- Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of VemP, a Vibrio secretory protein in both Escherichia coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photo-crosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD/YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating proper interactions with the Sec translocon.

この論文で使われている画像

関連論文

参考文献

1. Van den Berg, B., Clemons, W. M. J., Collinson, I., Modis, Y., Kartmann, E., Karrison, S. C., et al. (2004) X-ray structure of a protein-conducting cflannel. Nature 427, 36–44

2. Mori, K., and Ito, K. (200h) Tfle Sec protein-translocation patflway. Trends Microbiol. 9, 494–500

3. Rapoport, T. A., Li, L., and Fark, E. (20h7) Structural and mecflanistic insigflts into protein translocation. Annu. Rev. Cell Dev. Biol. 33, 369–390

4. Tanaka, Y., Sugano, Y., Takemoto, M., Mori, T., Furukawa, A., Kusaki- zako, T., et al. (20h5) Crystal structures of SecYEG in lipidic cubic pflase elucidate a precise resting and a peptide-bound state. Cell Rep. 13, h56h–h568

5. Akiyama, Y., and Ito, K. (h987) Topology analysis of tfle SecY protein, an integral membrane protein involved in protein export in Escherichia coli. EMBO J. 6, 3465–3470

6. Lill, R., Cunningflam, K., Brundage, L. A., Ito, K., Oliver, D., and Wickner, W. (h989) SecA protein flydrolyzes ATF and is an essential component of tfle protein translocation ATFase of Escherichia coli. EMBO J. 8, 96h–966

7. Economou, A., and Wickner, W. (h994) SecA promotes preprotein translocation by undergoing ATF-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843

8. \immer, J., Nam, Y., and Rapoport, T. A. (2008) Structure of a complex of tfle ATFase SecA and tfle protein-translocation cflannel. Nature 455, 936–943

9. Tsukazaki, T. (20h8) Structure-based working model of SecDF, a proton- driven bacterial protein translocation factor. FEMS Microbiol. Lett. 365, fnyhh2

10. Tsukazaki, T., Mori, K., Ecflizen, Y., Isflitani, R., Fukai, S., Tanaka, T., et al. (20hh) Structure and function of a membrane component SecDF tflat enflances protein export. Nature 474, 235–238

11. Samuelson, J. C., Cflen, M., Jiang, F., Möller, I., Wiedmann, M., Kufln, A., et al. (2000) YidC mediates membrane protein insertion in bacteria. Nature 406, 637–64h

12. Kumazaki, K., Cfliba, S., Takemoto, M., Furukawa, A., Nisfliyama, K., Sugano, Y., et al. (20h4) Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509, 5h6–520

13. Kumazaki, K., Kisflimoto, T., Furukawa, A., Mori, K., Tanaka, Y., Dofl- mae, N., et al. (20h4) Crystal structure of Escherichia coli YidC, a membrane protein cflaperone and insertase. Sci. Rep. 4, 7299

14. Tanaka, Y., Izumioka, A., Abdul Kamid, A., Fujii, A., Karuyama, T., Furukawa, A., et al. (20h8) 2.8-Å crystal structure of Escherichia coli YidC revealing all core regions, including flexible C2 loop. Biochem. Biophys. Res. Commun. 505, h4h–h45

15. Kater, L., Frieg, B., Berningflausen, O., Gofllke, K., Beckmann, R., and Kedrov, A. (20h9) Fartially inserted nascent cflain unzips tfle lateral gate of tfle Sec translocon. EMBO Rep. 20, e48h9h

16. Stull, F., Betton, J.-M., and Bardwell, J. C. A. (20h8) Feriplasmic cflap- erones and prolyl isomerases. EcoSal Plus. flttps://doi.org/h0.hh28/eco- salplus.ESF-0005-20h8

17. Sklar, J. G., Wu, T., Kaflne, D., and Silflavy, T. J. (2007) Defining tfle roles of tfle periplasmic cflaperones SurA, Skp, and DegF in Escherichia coli. Genes Dev. 21, 2473–2484

18. Wang, X., Feterson, J. K., and Bernstein, K. D. (202h) Bacterial outer membrane proteins are targeted to tfle Bam complex by two parallel mecflanisms. MBio. flttps://doi.org/h0.hh28/mBio.00597-2h

19. Dartigalongue, C., and Raina, S. (h998) A new fleat-sflock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer mem- brane proteins in Escherichia coli. EMBO J. 17, 3968–3980

20. Weininger, U., Jakob, R. F., Kovermann, M., Balbacfl, J., and Scflmid, F. X. (20h0) Tfle prolyl isomerase domain of FpiD from Escherichia coli sflows a parvulin fold but is devoid of catalytic activity. Protein Sci. 19, 6–h8

21. Matern, Y., Barion, B., and Beflrens-Kneip, S. (20h0) FpiD is a player in tfle network of periplasmic cflaperones in Escherichia coli. BMC Micro- biol. 10, 25h

22. Justice, S. S., Kunstad, D. A., Karper, J. R., Duguay, A. R., Finkner, J. S., Bann, J., et al. (2005) Feriplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J. Bacteriol. 187, 7680–7686

23. Antonoaea, R., Fürst, M., Nisfliyama, K.-I., and Müller, M. (2008) Tfle periplasmic cflaperone FpiD interacts witfl secretory proteins exiting from tfle SecYEG translocon. Biochemistry 47, 5649–5656

24. Sacflelaru, I., Fetriman, N.-A., Kudva, R., and Kocfl, K.-G. (20h4) Dy- namic interaction of tfle Sec translocon witfl tfle cflaperone FpiD. J. Biol. Chem. 289, 2h706–2h7h5

25. Fürst, M., \flou, Y., Merfort, J., and Müller, M. (20h8) Involvement of FpiD in Sec-dependent protein translocation. Biochim. Biophys. Acta. Mol. Cell Res. 1865, 273–280

26. Miyazaki, R., Myougo, N., Mori, K., and Akiyama, Y. (20h8) A pfloto- cross-linking approacfl to monitor folding and assembly of newly syn- tflesized proteins in a living cell. J. Biol. Chem. 293, 677–686

27. Isflii, E., Cfliba, S., Kasflimoto, N., Kojima, S., Komma, M., Ito, K., et al. (20h5) Nascent cflain-monitored remodeling of tfle Sec macflinery for salinity adaptation of marine bacteria. Proc. Natl. Acad. Sci. U. S. A. 112, E55h3–E5522

28. Miyazaki, R., Akiyama, Y., and Mori, K. (2020) Fine interaction profiling of VemF and mecflanisms responsible for its translocation-coupled ar- rest-cancelation. eLife. flttps://doi.org/h0.7554/eLife.62623

29. \eytuni, N., and \arivacfl, R. (20h2) Structural and functional discussion of tfle tetra-trico-peptide repeat, a protein interaction module. Structure 20, 397–405

30. Götzke, K., Falombo, I., Mufleim, C., Ferrody, E., Genevaux, F., Kudva, R., et al. (20h4) YfgM is an ancillary subunit of tfle SecYEG translocon in Escherichia coli. J. Biol. Chem. 289, h9089–h9097

31. Carlson, M. L., Stacey, R. G., Young, J. W., Wason, I. S., \flao, \., Rattray, D. G., et al. (20h9) Frofiling tfle Escherichia coli membrane protein interactome captured in Feptidisc libraries. eLife. flttps://doi.org/h0.7554/ eLife.466h5

32. Maddalo, G., Stenberg-Bruzell, F., Götzke, K., Toddo, S., Björkflolm, F., Eriksson, K., et al. (20hh) Systematic analysis of native membrane protein complexes in Escherichia coli. J. Proteome Res. 10, h848–h859

33. Miyazaki, R., Akiyama, Y., and Mori, K. (2020) A pfloto-cross-linking approacfl to monitor protein dynamics in living cells. Biochim. Biophys. Acta Gen. Subj. 1864, h293h7

34. Cflin, J. W., and Scflultz, F. G. (2002) In vivo pflotocrosslinking witfl unnatural amino acid mutagenesis. ChemBioChem 3, hh35–hh37

35. Rflodius, V. A., Sufl, W. C., Nonaka, G., West, J., and Gross, C. A. (2006) Conserved and variable functions of tfle sigmaE stress response in related genomes. PLoS Biol. 4, e2

36. Mori, K., Sakasflita, S., Ito, J., Isflii, E., and Akiyama, Y. (20h8) Identifi- cation and cflaracterization of a translation arrest motif in VemF by systematic mutational analysis. J. Biol. Chem. 293, 29h5–2926

37. Jumper, J., Evans, R., Fritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (202h) Kigflly accurate protein structure prediction witfl AlpflaFold. Nature 596, 583–589

38. [preprint] Evans, R., O’Neill, M., Fritzel, A., Antropova, N., Senior, A., Green, T., et al. (2022) Frotein complex prediction witfl AlpflaFold- Multimer. bioRxiv. flttps://doi.org/h0.hh0h/202h.h0.04.463034

39. Varadi, M., Anyango, S., Desflpande, M., Nair, S., Natassia, C., Yorda- nova, G., et al. (2022) AlpflaFold protein structure database: massively expanding tfle structural coverage of protein-sequence space witfl fligfl- accuracy models. Nucl. Acids Res. 50, D439–D444

40. Bitto, E., and McKay, D. B. (2002) Crystallograpflic structure of SurA, a molecular cflaperone tflat facilitates folding of outer membrane porins. Structure 10, h489–h498

41. Ludlam, A. V., Moore, B. A., and Xu, \. (2004) Tfle crystal structure of ribosomal cflaperone trigger factor from Vibrio cholerae. Proc. Natl. Acad. Sci. U. S. A. 101, h3436–h344h

42. Jakob, R. F., Kocfl, J. R., Burmann, B. M., Scflmidpeter, F. A. M., Kunk- eler, M., Killer, S., et al. (20h5) Dimeric structure of tfle bacterial extracellular foldase FrsA. J. Biol. Chem. 290, 3278–3292

43. Kan, D., Kim, K., Ofl, J., Fark, J., and Kim, Y. (2008) TFR domain of NrfG mediates complex formation between fleme lyase and formate-dependent nitrite reductase in Escherichia coli Oh57:K7. Proteins 70, 900–9h4

44. Blatcfl, G. L., and Lässle, M. (h999) Tfle tetratricopeptide repeat: a struc- tural motif mediating protein-protein interactions. Bioessays 21, 932–939

45. Daimon, Y., Iwama-Masui, C., Tanaka, Y., Sfliota, T., Suzuki, T., Miya- zaki, R., et al. (20h7) Tfle TFR domain of BepA is required for productive interaction witfl substrate proteins and tfle β-barrel assembly macflinery complex. Mol. Microbiol. 106, 760–776

46. [preprint] Germany, E. M., Ding, Y., Imai, K., Bamert, R. S., Dunstan, R. A., Nakajima, Y., et al. (202h) Discovery of a conserved rule beflind tfle assembly of β-barrel membrane proteins. bioRxiv. flttps://doi.org/h0. hh0h/202h.h0.29.466387

47. Graflam, J. B., Canniff, N. F., and Kebert, D. N. (20h9) TFR-containing proteins control protein organization and flomeostasis for tfle endo- plasmic reticulum. Crit. Rev. Biochem. Mol. Biol. 54, h03–hh8

48. Jauss, B., Fetriman, N.-A., Drepper, F., Franz, L., Sacflelaru, I., Welte, T., et al. (20h9) Noncompetitive binding of FpiD and YidC to tfle SecYEG translocon expands tfle global view on tfle SecYEG interactome in Escherichia coli. J. Biol. Chem. 294, h9h67–h9h83

49. Karris, C. R., and Silflavy, T. J. (h999) Mapping an interface of SecY (FrlA) and SecE (FrlG) by using syntfletic pflenotypes and in vivo cross-linking. J. Bacteriol. 181, 3438–3444

50. Miller, J. K. (h972) Experiments in Molecular Genetics, Cold Spring Karbor Laboratory Fress, Cold Spring Karbor, NY

51. Terasflima, K., Koike, M., Kojima, S., and Komma, M. (20h0) Tfle flagellar basal body-associated protein FlgT is essential for a novel ring structure in tfle sodium-driven Vibrio motor. J. Bacteriol. 192, 5609–56h5

52. Gunasingfle, S. D., Sfliota, T., Stubenraucfl, C. J., Scflulze, K. E., Webb, C. T., Fulcfler, A. J., et al. (20h8) Tfle WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in tfle bacterial outer membrane. Cell Rep. 23, 2782–2794

53. Nisfliyama, K., Mizusflima, S., and Tokuda, K. (h993) A novel membrane protein involved in protein translocation across tfle cytoplasmic mem- brane of. Escherichia Coli. EMBO J. 12, 3409–34h5

54. Baba, T., Jacq, A., Brickman, E., Beckwitfl, J., Taura, T., Uegucfli, C., et al. (h990) Cflaracterization of cold-sensitive secY mutants of Escherichia coli. J. Bacteriol. 172, 7005–70h0

55. Mirdita, M., Scflütze, K., Moriwaki, Y., Keo, L., Ovcflinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682

56. Nakatogawa, K., and Ito, K. (200h) Secretion monitor, SecM, undergoes self-translation arrest in tfle cytosol. Mol. Cell. 7, h85–h92

57. Baba, T., Ara, T., Kasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006) Construction of Escherichia coli K-h2 in-frame, single-gene knockout mutants: tfle Keio collection. Mol. Syst. Biol. 2, 2006.0008

58. Silflavy, T. J., Berman, M. L., Enquist, L. W., eds. (h984) Experiments with Gene Fusions. Cold Spring Karbor Laboratory Fress, NY

59. Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of cflromosomal genes in Escherichia coli K-h2 using FCR products. Proc. Natl. Acad. Sci. U. S. A. 97, 6640–6645

60. Kiflara, A., Akiyama, Y., and Ito, K. (h995) FtsK is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translo- case subunit. Proc. Natl. Acad. Sci. U. S. A. 92, 4532–4536

61. Blondelet-Rouault, M. K., Weiser, J., Lebrifli, A., Branny, F., and Fernodet, J. L. (h997) Antibiotic resistance gene cassettes derived from tfle omega interposon for use in E. coli and Streptomyces. Gene 190, 3h5–3h7

62. Akiyama, Y., and Ito, K. (h990) SecY protein, a membrane-embedded secretion factor of E. coli, is cleaved by tfle OmpT protease in vitro. Biochem. Biophys. Res. Commun. 167, 7hh–7h5

63. Satofl, Y., Matsumoto, G., Mori, K., and Ito, K. (2003) Nearest neigflbor analysis of tfle SecYEG complex. h. Identification of a SecY-SecG inter- face. Biochemistry 42, 7434–744h

64. Okunisfli, I., Kawagisfli, I., and Komma, M. (h996) Cloning and cflarac- terization of motY, a gene coding for a component of tfle sodium-driven flagellar motor in Vibrio alginolyticus. J. Bacteriol. 178, 2409–24h5

65. Young, T. S., Aflmad, I., Yin, J. A., and Scflultz, F. G. (20h0) An enflanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 36h–374

66. Mori, K., and Ito, K. (2006) Different modes of SecY-SecA interactions revealed by site-directed in vivo pfloto-cross-linking. Proc. Natl. Acad. Sci. U. S. A. 103, h6h59–h6h64

67. Scfläfer, A., Taucfl, A., Jäger, W., Kalinowski, J., Tflierbacfl, G., and Füfller, A. (h994) Small mobilizable multi-purpose cloning vectors derived from tfle Escherichia coli plasmids pKh8 and pKh9: selection of defined deletions in tfle cflromosome of Corynebacterium glutamicum. Gene 145, 69–73

68. Val, M.-E., Skovgaard, O., Ducos-Galand, M., Bland, M. J., and Mazel, D. (20h2) Genome engineering in Vibrio cholerae a feasible approacfl to address biological issues. PLoS Genet. 8, eh002472

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る