リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「S2P intramembrane protease RseP degrades small membrane proteins and suppresses the cytotoxicity of intrinsic toxin HokB」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

S2P intramembrane protease RseP degrades small membrane proteins and suppresses the cytotoxicity of intrinsic toxin HokB

Yokoyama, Tatsuhiko Yamagata, Yutaro Honna, Saisei Mizuno, Shinya Katagiri, Shizuka Oi, Rika Nogi, Terukazu Hizukuri, Yohei Akiyama, Yoshinori 京都大学 DOI:10.1128/mbio.01086-23

2023.08.31

概要

The site2-protease (S2P) family of intramembrane proteases (IMPs) is conserved in all kingdoms of life and cleaves transmembrane proteins within the membrane to regulate and maintain various cellular activities. RseP, an Escherichia coli S2P peptidase, is involved in the regulation of gene expression through the regulated cleavage of the two target membrane proteins (RseA and FecR) and in membrane quality control through the proteolytic elimination of remnant signal peptides. RseP is expected to have additional substrates and to be involved in other cellular processes. Recent studies have shown that cells express small membrane proteins (SMPs; single-spanning membrane proteins of approximately 50–100 amino acid residues) with crucial cellular functions. However, little is known about their metabolism, which affects their functions. This study investigated the possible RseP-catalyzed cleavage of E. coli SMPs based on the apparent similarity of the sizes and structures of SMPs to those of remnant signal peptides. We screened SMPs cleaved by RseP in vivo and in vitro and identified 14 SMPs, including HokB, an endogenous toxin that induces persister formation, as potential substrates. We demonstrated that RseP suppresses the cytotoxicity and biological functions of HokB. The identification of several SMPs as novel potential substrates of RseP provides a clue to a comprehensive understanding of the cellular roles of RseP and other S2P peptidases and highlights a novel aspect of the regulation of SMPs.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Strisovsky K. 2016. Why cells need Intramembrane proteases - a

mechanistic perspective. FEBS J 283:1837–1845. https://doi.org/10.1111/

febs.13638

Kühnle N, Dederer V, Lemberg MK. 2019. Intramembrane proteolysis at a

glance: from signalling to protein degradation. J Cell Sci 132:jcs217745.

https://doi.org/10.1242/jcs.217745

Kroos L, Akiyama Y. 2013. Biochemical and structural insights into

intramembrane metalloprotease mechanisms. Biochim Biophys Acta

1828:2873–2885. https://doi.org/10.1016/j.bbamem.2013.03.032

Weihofen A, Martoglio B. 2003. Intramembrane-cleaving proteases:

Controlled liberation of proteins and bioactive peptides. Trends Cell Biol

13:71–78. https://doi.org/10.1016/s0962-8924(02)00041-7

Sun L, Li X, Shi Y. 2016. Structural biology of intramembrane proteases:

mechanistic insights from rhomboid and S2P to γ-Secretase. Curr Opin

Struct Biol 37:97–107. https://doi.org/10.1016/j.sbi.2015.12.008

Schneider JS, Glickman MS. 2013. Function of Site-2 proteases in

bacteria and bacterial pathogens. Biochim Biophys Acta 1828:2808–

2814. https://doi.org/10.1016/j.bbamem.2013.04.019

Chen G, Zhang X. 2010. New insights into S2P signaling cascades:

regulation, variation, and conservation. Protein Sci 19:2015–2030. https:/

/doi.org/10.1002/pro.496

Kanehara K, Akiyama Y, Ito K. 2001. Characterization of the yaeL gene

product and its S2P-protease motifs in Escherichia coli. Gene 281:71–79.

https://doi.org/10.1016/s0378-1119(01)00823-x

Kanehara K, Ito K, Akiyama Y. 2002. YaeL (EcfE) activates the σE pathway

of stress response through a site-2 cleavage of anti-σE, RseA. Genes Dev

16:2147–2155. https://doi.org/10.1101/gad.1002302

July/August Volume 14

Issue 4

10.

11.

12.

13.

14.

15.

16.

17.

Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA. 2002. DegS and YaeL

participate sequentially in the cleavage of RseA to activate the σEdependent extracytoplasmic stress response. Genes Dev 16:2156–2168.

https://doi.org/10.1101/gad.1008902

Ades SE. 2008. Regulation by destruction: design of the σE envelope

stress response. Curr Opin Microbiol 11:535–540. https://doi.org/10.

1016/j.mib.2008.10.004

Yokoyama T, Niinae T, Tsumagari K, Imami K, Ishihama Y, Hizukuri Y,

Akiyama Y. 2021. The Escherichia coli S2P intramembrane protease RseP

regulates ferric citrate uptake by cleaving the sigma factor regulator

FecR. J Biol Chem 296:100673. https://doi.org/10.1016/j.jbc.2021.100673

Saito A, Hizukuri Y, Matsuo E, Chiba S, Mori H, Nishimura O, Ito K,

Akiyama Y. 2011. Post-liberation cleavage of signal peptides is catalyzed

by the Site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A

108:13740–13745. https://doi.org/10.1073/pnas.1108376108

Hizukuri Y, Oda T, Tabata S, Tamura-Kawakami K, Oi R, Sato M, Takagi J,

Akiyama Y, Nogi T. 2014. A structure-based model of substrate

discrimination by a noncanonical PDZ tandem in the intramembranecleaving protease RseP. Structure 22:326–336. https://doi.org/10.1016/j.

str.2013.12.003

Hizukuri Y, Akiyama Y. 2012. PDZ domains of RseP are not essential for

sequential cleavage of RseA or stress-induced σE activation in vivo. Mol

Microbiol 86:1232–1245. https://doi.org/10.1111/mmi.12053

Kanehara K, Ito K, Akiyama Y. 2003. YaeL proteolysis of RseA is controlled

by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J

22:6389–6398. https://doi.org/10.1093/emboj/cdg602

Imaizumi Y, Takanuki K, Miyake T, Takemoto M, Hirata K, Hirose M, Oi R,

Kobayashi T, Miyoshi K, Aruga R, Yokoyama T, Katagiri S, Matsuura H,

10.1128/mbio.01086-23 19

Downloaded from https://journals.asm.org/journal/mbio on 04 February 2024 by 2001:2f8:181:8184::fa.

Supplemental Material

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Iwasaki K, Kato T, Kaneko MK, Kato Y, Tajiri M, Akashi S, Nureki O, Hizukuri

Y, Akiyama Y, Nogi T. 2022. Mechanistic insights into intramembrane

proteolysis by E. coli Site-2 protease Homolog RseP. Sci Adv 8:eabp9011.

https://doi.org/10.1126/sciadv.abp9011

Miyake T, Hizukuri Y, Akiyama Y. 2020. Involvement of a membranebound amphiphilic helix in substrate discrimination and binding by an

Escherichia coli S2P peptidase RseP. Front Microbiol 11:607381. https://

doi.org/10.3389/fmicb.2020.607381

Akiyama K, Hizukuri Y, Akiyama Y. 2017. Involvement of a conserved GFG

motif region in substrate binding by RseP, an Escherichia coli S2P

protease. Mol Microbiol 104:737–751. https://doi.org/10.1111/mmi.

13659

Akiyama K, Mizuno S, Hizukuri Y, Mori H, Nogi T, Akiyama Y. 2015. Roles

of the membrane-reentrant β-hairpin-like loop of RseP protease in

selective substrate cleavage. eLife 4:e08928. https://doi.org/10.7554/

eLife.08928

Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. 2022. Small

proteins in archaea, a mainly unexplored world. J Bacteriol

204:e0031321. https://doi.org/10.1128/JB.00313-21

Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP,

Pavlopoulos GA, Kyrpides NC, Bhatt AS. 2019. Large-scale analyses of

human microbiomes reveal thousands of small, novel genes. Cell

178:1245–1259. https://doi.org/10.1016/j.cell.2019.07.016

Yadavalli SS, Yuan J. 2022. Bacterial small membrane proteins: The Swiss

Army knife of regulators at the lipid bilayer. J Bacteriol 204:e0034421.

https://doi.org/10.1128/JB.00344-21

Hemm MR, Weaver J, Storz G. 2020. Escherichia coli small Proteome.

EcoSal Plus 9:1128/ecosalplus.ESP-0031–2019. https://doi.org/10.1128/

ecosalplus.esp-0031-2019

Ito K, Akiyama Y. 2005. Cellular functions, mechanism of action, and

regulation of FtsH protease. Annu Rev Microbiol 59:211–231. https://doi.

org/10.1146/annurev.micro.59.030804.121316

Akiyama Y. 2009. Quality control of cytoplasmic membrane proteins in

Escherichia coli. J Biochem 146:449–454. https://doi.org/10.1093/jb/

mvp071

Pedersen K, Gerdes K. 1999. Multiple hok genes on the chromosome of

Escherichia coli. Mol Microbiol 32:1090–1102. https://doi.org/10.1046/j.

1365-2958.1999.01431.x

Wilmaerts D, Bayoumi M, Dewachter L, Knapen W, Mika JT, Hofkens J,

Dedecker P, Maglia G, Verstraeten N, Michiels J. 2018. The persistenceinducing toxin HokB forms dynamic pores that cause ATP leakage. mBio

9:e00744-18. https://doi.org/10.1128/mBio.00744-18

Wilmaerts D, Dewachter L, De Loose PJ, Bollen C, Verstraeten N, Michiels

J. 2019. HokB monomerization and membrane repolarization control

persister awakening. Mol Cell 75:1031–1042. https://doi.org/10.1016/j.

molcel.2019.06.015

Verstraeten N, Knapen WJ, Kint CI, Liebens V, Van den Bergh B,

Dewachter L, Michiels JE, Fu Q, David CC, Fierro AC, Marchal K, Beirlant J,

Versées W, Hofkens J, Jansen M, Fauvart M, Michiels J. 2015. Obg and

membrane depolarization are part of a microbial bet-hedging strategy

that leads to antibiotic tolerance. Mol Cell 59:9–21. https://doi.org/10.

1016/j.molcel.2015.05.011

Dewachter L, Fauvart M, Michiels J. 2019. Bacterial heterogeneity and

antibiotic survival: Understanding and combatting persistence and

heteroresistance. Mol Cell 76:255–267. https://doi.org/10.1016/j.molcel.

2019.09.028

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting

transmembrane protein topology with a hidden markov model:

application to complete genomes. J Mol Biol 305:567–580. https://doi.

org/10.1006/jmbi.2000.4315

Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. 2015. The TOPCONS web

server for consensus prediction of membrane protein topology and

signal peptides. Nucleic Acids Res 43:W401–7. https://doi.org/10.1093/

nar/gkv485

Fontaine F, Fuchs RT, Storz G. 2011. Membrane localization of small

proteins in Escherichia coli. J Biol Chem 286:32464–32474. https://doi.

org/10.1074/jbc.M111.245696

Akiyama Y, Kanehara K, Ito K. 2004. RseP (YaeL), an Escherichia coli RIP

protease, cleaves transmembrane sequences. EMBO J 23:4434–4442.

https://doi.org/10.1038/sj.emboj.7600449

July/August Volume 14

Issue 4

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Flynn JM, Levchenko I, Sauer RT, Baker TA. 2004. Modulating substrate

choice: The SspB adaptor delivers a regulator of the extracytoplasmicstress response to the AAA+ protease ClpXP for degradation. Genes Dev

18:2292–2301. https://doi.org/10.1101/gad.1240104

Chaba R, Grigorova IL, Flynn JM, Baker TA, Gross CA. 2007. Design

principles of the proteolytic cascade governing the σE-mediated

envelope stress response in Escherichia coli: keys to graded, buffered,

and rapid signal transduction. Genes Dev 21:124–136. https://doi.org/

10.1101/gad.1496707

Shimizu Y, Kanamori T, Ueda T. 2005. Protein synthesis by pure

translation systems. Methods 36:299–304. https://doi.org/10.1016/j.

ymeth.2005.04.006

Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T.

2001. Cell-free translation reconstituted with purified components. Nat

Biotechnol 19:751–755. https://doi.org/10.1038/90802

Fujii Y, Kaneko M, Neyazaki M, Nogi T, Kato Y, Takagi J. 2014. PA tag: A

versatile protein tagging system using a super high affinity antibody

against a dodecapeptide derived from human podoplanin. Protein Expr

Purif 95:240–247. https://doi.org/10.1016/j.pep.2014.01.009

Harms A, Brodersen DE, Mitarai N, Gerdes K. 2018. Toxins, targets, and

triggers: an overview of toxin-antitoxin biology. Mol Cell 70:768–784.

https://doi.org/10.1016/j.molcel.2018.01.003

Gerdes K, Rasmussen PB, Molin S. 1986. Unique type of plasmid

maintenance function: postsegregational killing of plasmid-free cells.

Proc Natl Acad Sci U S A 83:3116–3120. https://doi.org/10.1073/pnas.83.

10.3116

Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell

division to plasmid proliferation. Proc Natl Acad Sci U S A 80:4784–4788.

https://doi.org/10.1073/pnas.80.15.4784

Loh SM, Cram DS, Skurray RA. 1988. Nucleotide sequence and

transcriptional analysis of a third function (Flm) involved in F-plasmid

maintenance.

Gene

66:259–268.

https://doi.org/10.1016/03781119(88)90362-9

Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, MeierCredo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P,

Kühlbrandt W, Michel H. 2019. Active site rearrangement and structural

divergence in prokaryotic respiratory oxidases. Science 366:100–104.

https://doi.org/10.1126/science.aay0967

Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and

persister cells. Nat Rev Microbiol 15:453–464. https://doi.org/10.1038/

nrmicro.2017.42

Karimova G, Davi M, Ladant D. 2012. The β-lactam resistance protein Blr,

a small membrane polypeptide, is a component of the Escherichia coli

cell division machinery. J Bacteriol 194:5576–5588. https://doi.org/10.

1128/JB.00774-12

Lippa AM, Goulian M. 2009. Feedback inhibition in the PhoQ/PhoP

signaling system by a membrane peptide. PLoS Genet 5:e1000788.

https://doi.org/10.1371/journal.pgen.1000788

Bomjan R, Zhang M, Zhou D, DiRita VJ. 2019. YshB promotes intracellular

replication and is required for Salmonella virulence . J Bacteriol

201:e00314–19. https://doi.org/10.1128/JB.00314-19

Ellermeier CD, Losick R. 2006. Evidence for a novel protease governing

regulated intramembrane proteolysis and resistance to antimicrobial

peptides in Bacillus subtilis. Genes Dev 20:1911–1922. https://doi.org/10.

1101/gad.1440606

Hastie JL, Williams KB, Ellermeier CD. 2013. The activity of σv, an

extracytoplasmic function σ factor of Bacillus subtilis, is controlled by

regulated proteolysis of the anti-σ factor RsiV. J Bacteriol 195:3135–3144.

https://doi.org/10.1128/JB.00292-13

Bramkamp M, Weston L, Daniel RA, Errington J. 2006. Regulated

intramembrane proteolysis of FtsL protein and the control of cell

division in Bacillus subtilis. Mol Microbiol 62:580–591. https://doi.org/10.

1111/j.1365-2958.2006.05402.x

Matson JS, DiRita VJ. 2005. Degradation of the membrane-localized

virulence activator TcpP by the YaeL protease in Vibrio cholerae. Proc Natl

Acad Sci U S A 102:16403–16408. https://doi.org/10.1073/pnas.

0505818102

Almagro-Moreno S, Kim TK, Skorupski K, Taylor RK, Casadesús J. 2015.

Proteolysis of virulence regulator ToxR is associated with entry of Vibrio

cholerae into a dormant state. PLoS Genet 11:e1005145. https://doi.org/

10.1371/journal.pgen.1005145

10.1128/mbio.01086-23 20

Downloaded from https://journals.asm.org/journal/mbio on 04 February 2024 by 2001:2f8:181:8184::fa.

mBio

Research Article

55.

56.

mBio

Sklar JG, Makinoshima H, Schneider JS, Glickman MS. 2010. M.

tuberculosis intramembrane protease Rip1 controls transcription

through three anti-sigma factor substrates. Mol Microbiol 77:605–617.

https://doi.org/10.1111/j.1365-2958.2010.07232.x

Mukherjee P, Sureka K, Datta P, Hossain T, Barik S, Das KP, Kundu M, Basu

J. 2009. Novel role of Wag31 in protection of mycobacteria under

oxidative stress. Mol Microbiol 73:103–119. https://doi.org/10.1111/j.

1365-2958.2009.06750.x

July/August Volume 14

Issue 4

57.

58.

Schneider JS, Sklar JG, Glickman MS. 2014. The Rip1 protease of

Mycobacterium tuberculosis controls the SigD regulon. J Bacteriol

196:2638–2645. https://doi.org/10.1128/JB.01537-14

Beverin S, Sheppard DE, Park SS. 1971. D-Fucose as a gratuitous inducer

of the L-arabinose operon in strains of Escherichia coli B-r mutant in gene

araC. J Bacteriol 107:79–86. https://doi.org/10.1128/jb.107.1.79-86.1971

10.1128/mbio.01086-23 21

Downloaded from https://journals.asm.org/journal/mbio on 04 February 2024 by 2001:2f8:181:8184::fa.

Research Article

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る