リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Target-dependent RNA polymerase as universal platform for gene expression control in response to intracellular molecules」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Target-dependent RNA polymerase as universal platform for gene expression control in response to intracellular molecules

Komatsu, Shodai Ohno, Hirohisa Saito, Hirohide 京都大学 DOI:10.1038/s41467-023-42802-5

2023.11.17

概要

Controlling gene expression in response to specific molecules is an essential technique for regulating cellular functions. However, current platforms with transcription and translation regulators have a limited number of detectable molecules to induce gene expression. Here to address these issues, we present a Target-dependent RNA polymerase (TdRNAP) that can induce RNA transcription in response to the intracellular target specifically recognized by single antibody. By substituting the fused antibody, we demonstrate that TdRNAPs respond to a wide variety of molecules, including peptides, proteins, RNA, and small molecules, and produce desired transcripts in human cells. Furthermore, we show that multiple TdRNAPs can construct orthogonal and multilayer genetic circuits. Finally, we apply TdRNAP to achieve cell-specific genome editing that is autonomously triggered by detecting the target gene product. TdRNAP can expand the molecular variety for controlling gene expression and provide the genetic toolbox for bioengineering and future therapeutic applications.

この論文で使われている画像

参考文献

1.

Hossain, G. S., Saini, M., Miyake, R., Ling, H. & Chang, M. W. Genetic

biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol. 38, 797–810 (2020).

2. Alexandrov, K. & Vickers, C. E. In vivo protein-based biosensors:

seeing metabolism in real time. Trends Biotechnol. 41, 19–26 (2023).

3. Carthew, R. W. Gene regulation and cellular metabolism: an

essential partnership. Trends Genet. 37, 389–400 (2021).

4. Chathuranga, K., Weerawardhana, A., Dodantenna, N. & Lee, J.-S.

Regulation of antiviral innate immune signaling and viral evasion

following viral genome sensing. Exp. Mol. Med. 53,

1647–1668 (2021).

5. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the

cGAS-STING pathway in health and disease. Nat. Rev. Genet. 20,

657–674 (2019).

6. Gossen, M. et al. Transcriptional activation by tetracyclines in

mammalian cells. Science 268, 1766–1769 (1995).

7. Kavita, K. & Breaker, R. R. Discovering riboswitches: the past and the

future. Trends Biochem. Sci. 48, 119–141 (2023).

8. Raman, S., Taylor, N., Genuth, N., Fields, S. & Church, G. M. Engineering allostery. Trends Genet. 30, 521–528 (2014).

9. Jung, S. & Plückthun, A. Improving in vivo folding and stability of a

single-chain Fv antibody fragment by loop grafting. Protein Eng. 10,

959–966 (1997).

10. Wörn, A. et al. Correlation between in vitro stability and in vivo

performance of anti-GCN4 intrabodies as cytoplasmic inhibitors*. J.

Biol. Chem. 275, 2795–2803 (2000).

11. Gąciarz, A. & Ruddock, L. W. Complementarity determining regions

and frameworks contribute to the disulfide bond independent

folding of intrinsically stable scFv. PLoS ONE 12, e0189964 (2017).

12. Cao, J. et al. Nanobody-based sandwich reporter system for living

cell sensing influenza A virus infection. Sci. Rep. 9, 15899 (2019).

13. Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering

protein-protein devices for multilayered regulation of mRNA

translation using orthogonal proteases in mammalian cells. Nat.

Commun. 9, 4392 (2018).

Article

14. Nakanishi, H., Saito, H. & Itaka, K. Versatile design of intracellular

protein-responsive translational regulation system for synthetic

mRNA. ACS Synth. Biol. 11, 1077–1085 (2022).

15. Wang, W. et al. Bacteriophage T7 transcription system: an enabling

tool in synthetic biology. Biotechnol. Adv. 36, 2129–2137 (2018).

16. Ikeda, R. A. & Richardson, C. C. Enzymatic properties of a proteolytically nicked RNA polymerase of bacteriophage T7. J. Biol. Chem.

262, 3790–3799 (1987).

17. Shis, D. L. & Bennett, M. R. Library of synthetic transcriptional AND

gates built with split T7 RNA polymerase mutants. Proc. Natl. Acad.

Sci. USA 110, 5028–5033 (2013).

18. Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a split RNA

polymerase as a versatile biosensor platform. Nat. Chem. Biol. 13,

432–438 (2017).

19. Pu, J., Kentala, K. & Dickinson, B. C. Multidimensional control of

Cas9 by evolved RNA polymerase-based biosensors. ACS Chem.

Biol. 13, 431–437 (2018).

20. Ueda, H. et al. Open sandwich ELISA: a novel immunoassay based

on the interchain interaction of antibody variable region. Nat. Biotechnol. 14, 1714–1718 (1996).

21. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H. R. &

Plückthun, A. Ribosome display efficiently selects and evolves highaffinity antibodies in vitro from immune libraries. Proc. Natl. Acad.

Sci. USA 95, 14130–14135 (1998).

22. der Maur, A. A. et al. Direct in vivo screening of intrabody libraries

constructed on a highly stable single-chain framework. J. Biol.

Chem. 277, 45075–45085 (2002).

23. Steitz, T. A. The structural changes of T7 RNA polymerase from

transcription initiation to elongation. Curr. Opin. Struct. Biol. 19,

683–690 (2009).

24. Waraho, D. & DeLisa, M. P. Versatile selection technology for intracellular protein-protein interactions mediated by a unique bacterial

hitchhiker transport mechanism. Proc. Natl. Acad. Sci. USA 106,

3692–3697 (2009).

25. Brizzard, B. L., Chubet, R. G. & Vizard, D. L. Immunoaffinity purification of FLAG epitope-tagged bacterial alkaline phosphatase

using a novel monoclonal antibody and peptide elution. Biotechniques 16, 730–735 (1994).

26. Wegner, G. J., Lee, H. J. & Corn, R. M. Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal. Chem. 74,

5161–5168 (2002).

27. Ranawakage, D. C., Takada, T. & Kamachi, Y. HiBiT-qIP, HiBiT-based

quantitative immunoprecipitation, facilitates the determination of

antibody affinity under immunoprecipitation conditions. Sci. Rep. 9,

6895 (2019).

28. Lim, B. N. et al. Directed evolution of nucleotide-based libraries

using lambda exonuclease. Biotechniques 53, 357–364 (2012).

29. Lin, J., Wang, W.-J., Wang, Y., Liu, Y. & Xu, L. Building endogenous

gene connections through RNA self-assembly controlled CRISPR/

Cas9 function. J. Am. Chem. Soc. 143, 19834–19843 (2021).

30. Zhao, E. M. et al. RNA-responsive elements for eukaryotic translational control. Nat. Biotechnol. 40, 539–545 (2022).

31. Kaseniit, K. E. et al. Modular, programmable RNA sensing using

ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2023).

32. Ye, J.-D. et al. Synthetic antibodies for specific recognition and

crystallization of structured RNA. Proc. Natl. Acad. Sci. USA 105,

82–87 (2008).

33. Koldobskaya, Y. et al. A portable RNA sequence whose recognition

by a synthetic antibody facilitates structural determination. Nat.

Struct. Mol. Biol. 18, 100–106 (2011).

34. Koirala, D., Lewicka, A., Koldobskaya, Y., Huang, H. & Piccirilli, J. A.

Synthetic antibody binding to a preorganized RNA domain of

hepatitis C virus internal ribosome entry site inhibits translation.

ACS Chem. Biol. 15, 205–216 (2020).

Nature Communications | (2023)14:7256

https://doi.org/10.1038/s41467-023-42802-5

35. Midelfort, K. S. et al. Substantial energetic improvement with

minimal structural perturbation in a high affinity mutant antibody. J.

Mol. Biol. 343, 685–701 (2004).

36. Ellefson, J. W. et al. Directed evolution of genetic parts and circuits

by compartmentalized partnered replication. Nat. Biotechnol. 32,

97–101 (2014).

37. Guo, P., Yang, J., Huang, J., Auguste, D. T. & Moses, M. A. Therapeutic genome editing of triple-negative breast tumors using a

noncationic and deformable nanolipogel. Proc. Natl. Acad. Sci. USA

116, 18295–18303 (2019).

38. Hamilton, J. R. et al. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35,

109207 (2021).

39. Hirosawa, M. et al. Cell-type-specific genome editing with a

microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res. 45,

e118 (2017).

40. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C.

A. Escherichia coli ‘Marionette’ strains with 12 highly optimized

small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

41. Taylor, N. D. et al. Engineering an allosteric transcription factor to

respond to new ligands. Nat. Methods 13, 177–183 (2016).

42. Spöring, M., Finke, M. & Hartig, J. S. Aptamers in RNA-based

switches of gene expression. Curr. Opin. Biotechnol. 63,

34–40 (2020).

43. Townshend, B., Xiang, J. S., Manzanarez, G., Hayden, E. J. & Smolke,

C. D. A multiplexed, automated evolution pipeline enables scalable

discovery and characterization of biosensors. Nat. Commun. 12,

1437 (2021).

44. Kim, J., McFee, M., Fang, Q., Abdin, O. & Kim, P. M. Computational

and artificial intelligence-based methods for antibody development. Trends Pharmacol. Sci. 44, 175–189 (2023).

45. Langan, R. A. et al. De novo design of bioactive protein switches.

Nature 572, 205–210 (2019).

46. Rihtar, E. et al. Chemically inducible split protein regulators for

mammalian cells. Nat. Chem. Biol. 19, 64–71 (2022).

47. Bertschi, A., Wang, P., Galvan, S., Teixeira, A. P. & Fussenegger,

M. Combinatorial protein dimerization enables precise multiinput synthetic computations. Nat. Chem. Biol. 19, 767–777

(2023).

48. Meyer, A. J., Ellefson, J. W. & Ellington, A. D. Directed evolution of a

panel of orthogonal T7 RNA polymerase variants for in vivo or

in vitro synthetic circuitry. ACS Synth. Biol. 4, 1070–1076 (2015).

49. Pu, J., Dewey, J. A., Hadji, A., LaBelle, J. L. & Dickinson, B. C. RNA

polymerase tags to monitor multidimensional protein-protein

interactions reveal pharmacological engagement of Bcl-2 proteins.

J. Am. Chem. Soc. 139, 11964–11972 (2017).

50. Shutt, T. E. & Gray, M. W. Bacteriophage origins of mitochondrial

replication and transcription proteins. Trends Genet. 22,

90–95 (2006).

51. Dubuc, E. et al. Cell-free microcompartmentalised transcriptiontranslation for the prototyping of synthetic communication networks. Curr. Opin. Biotechnol. 58, 72–80 (2019).

52. Zhang, C., Liu, H., Li, X., Xu, F. & Li, Z. Modularized synthetic biology

enabled intelligent biosensors. Trends Biotechnol. 41, 1055–1065

(2023).

53. Rivera, V. M. et al. A humanized system for pharmacologic control

of gene expression. Nat. Med. 2, 1028–1032 (1996).

54. Yoshihara, K. et al. The landscape and therapeutic relevance of

cancer-associated transcript fusions. Oncogene 34, 4845–4854

(2015).

55. Doench, J. G. et al. Optimized sgRNA design to maximize activity

and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol.

34, 184–191 (2016).

56. Sudmant, P. H., Lee, H., Dominguez, D., Heiman, M. & Burge, C. B.

Widespread accumulation of ribosome-associated isolated 3’ UTRs

10

Article

57.

58.

59.

60.

61.

62.

63.

64.

in neuronal cell populations of the aging brain. Cell Rep. 25,

2447–2456.e4 (2018).

Dhamija, S. et al. A pan-cancer analysis reveals nonstop extension

mutations causing SMAD4 tumour suppressor degradation. Nat.

Cell Biol. 22, 999–1010 (2020).

Multhoff, G. Heat shock protein 70 (Hsp70): membrane location,

export and immunological relevance. Methods 43, 229–237 (2007).

Friedrich, L. et al. Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal

antibody cmHsp70.1, a reagent for tumour diagnostics. Protein Eng.

Des. Sel. 23, 161–168 (2010).

Kaelin, W. G. Jr. Common pitfalls in preclinical cancer target validation. Nat. Rev. Cancer 17, 425–440 (2017).

Huovinen, T. et al. Primer extension mutagenesis powered by

selective rolling circle amplification. PLoS ONE 7, e31817 (2012).

Liu, B., Long, S. & Liu, J. Improving the mutagenesis efficiency of the

Kunkel method by codon optimization and annealing temperature

adjustment. N. Biotechnol. 56, 46–53 (2020).

Mali, P. et al. RNA-guided human genome engineering via Cas9.

Science 339, 823–826 (2013).

Mirdita, M. et al. ColabFold: making protein folding accessible to all.

Nat. Methods 19, 679–682 (2022).

Acknowledgements

We thank Dr. Yoshihiko Fujita (Kyoto University), Dr. Tatsuyuki Yoshii

(Kyoto University), Dr. Shin Kaneko (Kyoto University), Dr. Atsutaka Minagawa (Kyoto University), and Dr. Yoshihiro Shimizu (RIKEN) for helpful

discussions, and Dr. Shunsuke Kawasaki (Kyoto University) and Dr. Moe

Hirosawa (Kyoto University) for supplying materials. Dr. Kanae Mitsunaga

(Kyoto University) for technical assistance, Dr. Kelvin K. Hui (Kyoto University) and Maya Lopez (Imperial College London) for proofreading the

manuscript, and Yuko Kono, Hiromi Takemoto, and Yoshiko Ogawa for

their administrative support, and Dr. Dan Liu (National Institute of

Technology, Ariake College) for encouragement throughout the

research process. S.K. was supported by Scholarships from Iwadare

Scholarship Foundation and Honjo International Scholarship Foundation. This work was supported by JST SPRING, Grant Number

JPMJSP2110. This work was also supported by the JSPS KAKENHI (Grant

Numbers JP20H05626 and 20H05701) and iPS Cell Research Fund from

Center for iPS Cell Research and Application, Kyoto University.

Nature Communications | (2023)14:7256

https://doi.org/10.1038/s41467-023-42802-5

Author contributions

S.K. performed all the experiments. S.K., H.O., and H.S. designed

experimental strategies and wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-42802-5.

Correspondence and requests for materials should be addressed to

Hirohide Saito.

Peer review information Nature Communications thanks Kirill Alexandrov, and the other, anonymous, reviewer(s) for their contribution to the

peer review of this work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る