リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting

Tsujisaka, Yuta Hatani, Takeshi Okubo, Chikako Ito, Ryo Kimura, Azuma Narita, Megumi Chonabayashi, Kazuhisa Funakoshi, Shunsuke Lucena-Cacace, Antonio Toyoda, Taro Osafune, Kenji Kimura, Takeshi Saito, Hirohide Yoshida, Yoshinori 京都大学 DOI:10.1016/j.stemcr.2022.05.003

2022.07.12

概要

For regenerative cell therapies using pluripotent stem cell (PSC)-derived cells, large quantities of purified cells are required. Magnetic-activated cell sorting (MACS) is a powerful approach to collect target antigen-positive cells; however, it remains a challenge to purify various cell types efficiently at large scale without using antibodies specific to the desired cell type. Here we develop a technology that combines microRNA (miRNA)-responsive mRNA switch (miR-switch) with MACS (miR-switch-MACS) to purify large amounts of PSC-derived cells rapidly and effectively. We designed miR-switches that detect specific miRNAs expressed in target cells and controlled the translation of a CD4-coding transgene as a selection marker for MACS. For the large-scale purification of induced PSC-derived cardiomyocytes (iPSC-CMs), we transferred miR-208a-CD4 switch-MACS and obtained purified iPSC-CMs efficiently. Moreover, miR-375-CD4 switch-MACS highly purified pancreatic insulin-producing cells and their progenitors expressing Chromogranin A. Overall, the miR-switch-MACS method can efficiently purify target PSC-derived cells for cell replacement therapy.

この論文で使われている画像

参考文献

Ahlgren, U., Jonsson, J., Jonsson, L., Simu, K., and Edlund, H. (1998). b-Cell-specific inactivation of the mouseIpf1/Pdx1 gene re- sults in loss of the b-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768.https://doi.org/10.1101/gad.12.12.1763.

Ambros, V. (2001). microRNAs: tiny regulators with great poten- tial. Cell 107, 823–826. https://doi.org/10.1016/s0092-8674(01) 00616-x.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq–a Python frame- work to work with high-throughput sequencing data. Bioinformat- ics 31, 166–169. https://doi.org/10.1093/bioinformatics/btu638.

Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. https://doi.org/10.1016/s0092-8674(04)00045-5.

Burridge, P.W., Matsa, E., Shukla, P., Lin, Z.C., Churko, J.M., Ebert, A.D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N.M., et al. (2014). Chemically defined generation of human cardiomyocytes. Nat. Methods 11, 855–860. https://doi.org/10.1038/nmeth.2999.

Chong, J.J.H., Yang, X., Don, C.W., Minami, E., Liu, Y.W., Weyers, J.J., Mahoney, W.M., Van Biber, B., Cook, S.M., Palpant, N.J., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277. https://doi.org/10.1038/nature13233.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultra- fast universal RNA-seq aligner. Bioinformatics 29, 15–21. https:// doi.org/10.1093/bioinformatics/bts635.

Dubois, N.C., Craft, A.M., Sharma, P., Elliott, D.A., Stanley, E.G., Elefanty, A.G., Gramolini, A., and Keller, G. (2011). SIRPA is a spe- cific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018. https://doi.org/10.1038/nbt.2005.

Dunn, T.B., Noreen, H., Gillingham, K., Maurer, D., Ozturk, O.G., Pruett, T.L., Bray, R.A., Gebel, H.M., and Matas, A.J. (2011). Revisit- ing traditional risk factors for rejection and graft loss after kidney transplantation. Am. J. Transplant. 11, 2132–2143. https://doi. org/10.1111/j.1600-6143.2011.03640.x.

Eliasson, L. (2017). The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell func- tion. Mol. Cell. Endocrinol. 456, 95–101. https://doi.org/10. 1016/j.mce.2017.02.043.

Endo, K., Hayashi, K., and Saito, H. (2016). High-resolution identi- fication and separation of living cell types by multiple microRNA- responsive synthetic mRNAs. Sci. Rep. 6, 21991. https://doi.org/ 10.1038/srep21991.

Endo, K., Hayashi, K., and Saito, H. (2019). Numerical operations in living cells by programmable RNA devices. Sci. Adv. 5, eaax0835. https://doi.org/10.1126/sciadv.aax0835.

Fujita, Y., Hirosawa, M., Hayashi, K., Hatani, T., Yoshida, Y., Yamamoto, T., and Saito, H. (2022). A versatile and robust cell pu- rification system with an RNA-only circuit composed of micro- RNA-responsive ON and OFF switches. Sci. Adv. 8, eabj1793. https://doi.org/10.1126/sciadv.abj1793.

Funakoshi, S., Miki, K., Takaki, T., Okubo, C., Hatani, T., Chona- bayashi, K., Nishikawa, M., Takei, I., Oishi, A., Narita, M., et al. (2016). Enhanced engraftment, proliferation, and therapeutic po- tential in heart using optimized human iPSC-derived cardiomyo- cytes. Sci. Rep. 6, 19111. https://doi.org/10.1038/srep19111.

Hatani, T., Funakoshi, S., Deerinck, T.J., Bushong, E.A., Kimura, T., Takeshima, H., Ellisman, M.H., Hoshijima, M., and Yoshida, Y.(2018a). Nano-structural analysis of engrafted human induced pluripotent stem cell-derived cardiomyocytes in mouse hearts us- ing a genetic-probe APEX2. Biochem. Biophys. Res. Commun. 505, 1251–1256. https://doi.org/10.1016/j.bbrc.2018.10.020.

Hatani, T., Miki, K., and Yoshida, Y. (2018b). Induction of human induced pluripotent stem cells to cardiomyocytes using embryoid bodies. Methods Mol. Biol. 1816, 79–92. https://doi.org/10.1007/ 978-1-4939-8597-5_6.

Hattori, F., and Fukuda, K. (2012). Strategies for replacing myocytes with induced pluripotent stem in clinical protocols. Transplant. Rev. 26, 223–232. https://doi.org/10.1016/j.trre.2011.09.003.

Karlsson, E. (2001). The role of pancreatic chromogranins in islet physiology. Curr. Mol. Med. 1, 727–732. https://doi.org/10.2174/ 1566524013363294.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read align- ment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/ 10.1038/nmeth.1923.

Lee, J.H., Protze, S.I., Laksman, Z., Backx, P.H., and Keller, G.M. (2017). Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell 21, 179–194.e4. https://doi.org/10.1016/j.stem.2017. 07.003.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated esti- mation of fold change and dispersion for RNA-seq data with DE- Seq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8.

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10. https://doi. org/10.14806/ej.17.1.200.

Matsuura, S., Ono, H., Kawasaki, S., Kuang, Y., Fujita, Y., and Saito, H. (2018). Synthetic RNA-based logic computation in mammalian cells. Nat. Commun. 9, 4847. https://doi.org/10.1038/s41467-018-07181-2.

Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama, S., Toyoda, T., Kotaka, M., Takaki, T., Umeda, M., et al. (2015). Effi- cient detection and purification of cell populations using synthetic MicroRNA switches. Cell Stem Cell 16, 699–711. https://doi.org/ 10.1016/j.stem.2015.04.005.

Nakanishi, H., and Saito, H. (2019). Mammalian gene circuits with biomolecule-responsive RNA devices. Curr. Opin. Chem. Biol. 52, 16–22. https://doi.org/10.1016/j.cbpa.2019.04.013.

Ohno, H., Akamine, S., and Saito, H. (2020). Synthetic mRNA- based Systems in mammalian cells. Adv Biosyst. 4, e1900247. https://doi.org/10.1002/adbi.201900247.

Ohnuki, M., Takahashi, K., and Yamanaka, S. (2009). Generation and characterization of human induced pluripotent stem cells. Current Protoc. Stem Cell Biol. Chapter 4. Unit 4A 2. https://doi. org/10.1002/9780470151808.sc04a02s9.

Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi- Rosso, G., and Lobb, R. (1989). Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59, 1203–1211. https:// doi.org/10.1016/0092-8674(89)90775-7.

Protze, S.I., Liu, J., Nussinovitch, U., Ohana, L., Backx, P.H., Gep- stein, L., and Keller, G.M. (2017). Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68. https://doi.org/10.1038/ nbt.3745.

Rieck, S., Bankaitis, E.D., and Wright, C.V. (2012). Lineage determi- nants in early endocrine development. Semin. Cell Dev. Biol. 23, 673–684. https://doi.org/10.1016/j.semcdb.2012.06.005.

Sanganalmath, S.K., and Bolli, R. (2013). Cell therapy for heart fail- ure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ. Res. 113, 810–834. https://doi.org/10.1161/circresaha.113.300219.

Shiba, Y., Gomibuchi, T., Seto, T., Wada, Y., Ichimura, H., Tanaka, Y., Ogasawara, T., Okada, K., Shiba, N., Sakamoto, K., et al. (2016). Allogeneic transplantation of iPS cell-derived cardiomyo- cytes regenerates primate hearts. Nature 538, 388–391. https:// doi.org/10.1038/nature19815.

Tohyama, S., Hattori, F., Sano, M., Hishiki, T., Nagahata, Y., Mat- suura, T., Hashimoto, H., Suzuki, T., Yamashita, H., Satoh, Y., et al. (2013). Distinct metabolic flow enables large-scale purifica- tion of mouse and human pluripotent stem cell-derived cardio- myocytes. Cell Stem Cell 12, 127–137. https://doi.org/10.1016/j. stem.2012.09.013.

Toyoda, T., Mae, S.I., Tanaka, H., Kondo, Y., Funato, M., Hosokawa, Y., Sudo, T., Kawaguchi, Y., and Osafune, K. (2015). Cell aggrega- tion optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res. 14, 185–197. https://doi.org/10.1016/j.scr.2015.01.007.

Virani, S.S., Alonso, A., Benjamin, E.J., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Del- ling, F.N., et al. (2020). Heart disease and stroke statistics-2020 up- date: a report from the American heart association. Circulation 141, e139–e596. https://doi.org/10.1161/cir.0000000000000757.

Wang, H., Maechler, P., Ritz-Laser, B., Hagenfeldt, K.A., Ishihara, H., Philippe, J., and Wollheim, C.B. (2001). Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J. Biol. Chem. 276, 25279–25286. https://doi.org/10.1074/jbc. M101233200.

Wang, L., Wang, S., and Li, W. (2012). RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185. https://doi. org/10.1093/bioinformatics/bts356.

Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentia- tion of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630. https://doi.org/10.1016/j.stem.2010.08.012.

Yang, L., Soonpaa, M.H., Adler, E.D., Roepke, T.K., Kattman, S.J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G.W., Linden, R.M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528. https://doi.org/10.1038/nature06894.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る