リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A disease-specific iPS cell resource for studying rare and intractable diseases」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A disease-specific iPS cell resource for studying rare and intractable diseases

Saito, Megumu K. Osawa, Mitsujiro Tsuchida, Nao Shiraishi, Kotaro Niwa, Akira Woltjen, Knut Asaka, Isao Ogata, Katsuhisa Ito, Suminobu Kobayashi, Shuzo Yamanaka, Shinya 京都大学 DOI:10.1186/s41232-023-00294-2

2023.09.08

概要

[Background] Disease-specific induced pluripotent stem cells (iPSCs) are useful tools for pathological analysis and diagnosis of rare diseases. Given the limited available resources, banking such disease-derived iPSCs and promoting their widespread use would be a promising approach for untangling the mysteries of rare diseases. Herein, we comprehensively established iPSCs from patients with designated intractable diseases in Japan and evaluated their properties to enrich rare disease iPSC resources. [Methods] Patients with designated intractable diseases were recruited for the study and blood samples were collected after written informed consent was obtained from the patients or their guardians. From the obtained samples, iPSCs were established using the episomal method. The established iPSCs were deposited in a cell bank. [Results] We established 1, 532 iPSC clones from 259 patients with 139 designated intractable diseases. The efficiency of iPSC establishment did not vary based on age and sex. Most iPSC clones originated from non-T and non-B hematopoietic cells. All iPSC clones expressed key transcription factors, OCT3/4 (range 0.27–1.51; mean 0.79) and NANOG (range 0.15–3.03; mean 1.00), relative to the reference 201B7 iPSC clone. [Conclusions] These newly established iPSCs are readily available to the researchers and can prove to be a useful resource for research on rare intractable diseases.

この論文で使われている画像

参考文献

1. Haendel M, Vasilevsky N, Unni D, Bologa C, Harris N, Rehm H, et al. How

many rare diseases are there? Nat Rev Drug Discov. 2020;19(2):77–8.

Saito et al. Inflammation and Regeneration

(2023) 43:43

2. Austin CP, Cutillo CM, Lau LPL, Jonker AH, Rath A, Julkowska D, et al.

Future of Rare Diseases Research 2017–2027: an IRDiRC Perspective.

Clin Transl Sci. 2018;11(1):21–7.

3. Boycott KM, Lau LP, Cutillo CM, Austin CP. International collaborative

actions and transparency to understand, diagnose, and develop therapies for rare diseases. EMBO Mol Med. 2019;11(5):e10486.

4. Anderson RH, Francis KR. Modeling rare diseases with induced pluripotent stem cell technology. Mol Cell Probes. 2018;40:52–9.

5. Karagiannis P, Yamanaka S, Saito MK. Application of induced pluripotent stem cells to primary immunodeficiency diseases. Exp Hematol.

2019;71:43–50.

6. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, et al.

An efficient nonviral method to generate integration-free humaninduced pluripotent stem cells from cord blood and peripheral blood

cells. Stem Cells. 2013;31(3):458–66.

7. Ye L, Muench MO, Fusaki N, Beyer AI, Wang J, Qi Z, et al. Blood cell-derived

induced pluripotent stem cells free of reprogramming factors generated

by Sendai viral vectors. Stem Cells Transl Med. 2013;2(8):558–66.

8. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al.

Generation of induced pluripotent stem cells without Myc from mouse

and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6.

9. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al.

Induction of pluripotent stem cells from adult human fibroblasts by

defined factors. Cell. 2007;131(5):861–72.

10. Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y, et al. Generation

of induced pluripotent stem cells from urine. J Am Soc Nephrol.

2011;22(7):1221–8.

11. Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare

and undiagnosed disease: beyond the exome. Genome Medicine.

2022;14(1):23.

12. Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, et al.

Induced pluripotent stem cells and their use in human models of disease

and development. Physiol Rev. 2019;99(1):79–114.

13. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S,

Matsumura M, et al. Self-organized formation of polarized cortical tissues

from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell.

2008;3(5):519–32.

14. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney

organoids from human iPS cells contain multiple lineages and model

human nephrogenesis. Nature. 2015;526(7574):564–8.

15. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al.

Vascularized and functional human liver from an iPSC-derived organ bud

transplant. Nature. 2013;499(7459):481–4.

16. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME,

et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9.

17. Taniguchi-Ikeda M, Koyanagi-Aoi M, Maruyama T, Takaori T, Hosoya A,

Tezuka H, et al. Restoration of the defect in radial glial fiber migration

and cortical plate organization in a brain organoid model of Fukuyama

muscular dystrophy. iScience. 2021;24(10):103140.

18 Kanatani Y, Tomita N, Sato Y, Eto A, Omoe H, Mizushima H. National registry of designated intractable diseases in Japan: present status and future

prospects. Neurol Med Chir (Tokyo). 2017;57(1):1–7.

19. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, et al.

The homeoprotein Nanog is required for maintenance of pluripotency in

mouse epiblast and ES cells. Cell. 2003;113(5):631–42.

20. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers

I, et al. Formation of pluripotent stem cells in the mammalian embryo

depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.

21. Kawasaki Y, Oda H, Ito J, Niwa A, Tanaka T, Hijikata A, et al. Identification of

a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol

(Hoboken, NJ). 2016;69(2):447–59.

22. Ronen D, Benvenisty N. Sex-dependent gene expression in human pluripotent stem cells. Cell Rep. 2014;8(4):923–32.

23. Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, et al. Gender

differences in global but not targeted demethylation in iPSC reprogramming. Cell Rep. 2017;18(5):1079–89.

24. Li Y, Wen Y, Green M, Cabral EK, Wani P, Zhang F, et al. Cell sex affects

extracellular matrix protein expression and proliferation of smooth

Page 10 of 10

muscle progenitor cells derived from human pluripotent stem cells. Stem

Cell Res Ther. 2017;8(1):156.

25. Agu CA, Soares FAC, Alderton A, Patel M, Ansari R, Patel S, et al. Successful

generation of human induced pluripotent stem cell lines from blood

samples held at room temperature for up to 48 hr. Stem Cell Reports.

2015;5(4):660–71.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る