リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Temporal magnetotellurics reveals mechanics of the 2012 Mount Tongariro, NZ, eruption」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Temporal magnetotellurics reveals mechanics of the 2012 Mount Tongariro, NZ, eruption

小川 康雄 Yasuo Ogawa 東京工業大学 DOI:https://doi.org/10.1029/2019GL086429

2020.04.17

概要

Monitoring dynamics of volcanic eruptions with geophysics is challenging. In August and November 2012, two small eruptions from Mount Tongariro provided a unique opportunity to image subsurface changes caused by the eruptions. A detailed magnetotelluric survey of the Tongariro volcanic complex completed prior to the eruption (2008–2010) provides the preeruption structure of the magmatic system. A subset of the initial measurement locations was reoccupied in June 2013. Significant changes were observed in phase tensor data at sites close to the eruptive center. Although subsurface electrical resistivity changed, the geometry of the preeruptive reservoir did not. These subsurface resistivity variations are interpreted as being predominantly caused by interaction of partial melt and the overlying brine layer causing volume reduction of the brine layer through phreatic eruption. The ability to detect significant changes associated with the magma reservoir suggests that magnetotellurics can be a valuable volcano monitoring tool.

この論文で使われている画像

参考文献

Afanasyev, A., Blundy, J., Melnik, O., & Sparks, S. (2018). Formation of magmatic brine lenses via focused fiuid‐fiow beneath volcanoes. Earth and Planetary Science Letters, 486, 119–128. https://doi.org/10.1016/j.epsl.2018.01.013

Aizawa, K., Kanda, W., Ogawa, Y., Iguchi, M., Yokoo, A., Yakiwara, H., & Sugano, T. (2011). Temporal changes in electrical resistivity at Sakurajima volcano from continuous magnetotelluric observations. Journal of Volcanology and Geothermal Research, 199, 165–175.

Arpa, M. C., Zellmer, G. F., Christenson, B., Lube, G., & Shellnutt, G. (2017). Variable magma reservoir depths for Tongariro volcanic complex eruptive deposits from 10,000 years to present. Bulletin of Volcanology, 79(7). https://doi.org/10.1007/s00445‐017‐1137‐5

Bedrosian, P. A., Peacock, J. R., Bowles‐Martinez, E., Schultz, A., & Hill, G. J. (2018). Crustal inheritance and a top‐down control on arc magmatism at Mount St Helens. Nature Geoscience, 11(11), 865–870. https://doi.org/10.1038/s41561‐018‐0217‐2

Bibby, H. M., Caldwell, T. G., & Brown, C. (2005). Determinable and non‐determinable parameters of galvanic distortion in magnetotel- lurics. Geophysical Journal International, 163, 915–930.

Blundy, J., & Cashman, K. (2001). Ascent‐driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contributions to Mineralogy and Petrology, 140, 631–650.

Blundy, J., Cashman, K., & Humphreys, M. (2006). Magma heating by decompression‐driven crystallization beneath andesite volcanoes. Nature, 443(7107), 76–80. https://doi.org/10.1038/nature05100

Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, R. S. J., & Gilmer, A. (2015). Generation of porphyry copper deposits by gas‐brine reaction in volcanic arcs. Nature Geoscience, 8, 235–240. https://doi.org/10.1038/NGEO2351

Booker, J. R. (2014). The magnetotelluric phase tensor: A critical review. Surveys in Geophysics, 35(1), 7–40. https://doi.org/10.1007/s10712‐013‐9234‐2

Cagniard, L. (1953). Basic theory of the magneto‐telluric method of geophysical prospecting. Geophysics, 18, 603–635.

Caldwell, T. G., Bibby, H. M., & Brown, C. (2004). The magnetotelluric phase tensor. Geophysical Journal International, 158, 457–469.

Caudron, C., Girona, T., Taisne, B., Suparjan, Gunawan, H., Kristianto, & Kasbani (2019). Change in seismic attenuation as a long‐term precursor of gas‐driven eruptions. Geology, 47(7), 632–636. https://doi.org/10.1130/G46107.1

Christopher, T. E., Blundy, J., Cashman, K., Cole, P., Edmonds, M., Smith, P. J., et al. (2015). Crustal‐scale degassing due to magma system destabilization and magma‐gas decoupling at Soufrière Hills Volcano, Montserrat. Geochemistry, Geophysics, Geosystems, 16, 2797–2811. https://doi.org/10.1002/2015GC005791

Cronin, S., Stewart, C., Zernack, A., Brenna, M., Procter, J., Pardo, N., et al. (2014). Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 286, 233–247.

Degruyter, W., Parmigiani, A., Huber, C., & Bachmann, O. (2019). How do volatiles escape their shallow magmatic hearth? Philosophical Transactions of the Royal Society of London, 377. https://doi.org/10.1098/rsta.2018.0017

Dzurisin, D., Lisowski, M., Poland, M. P., Sherrod, D. R., & LaHusen, R. G. (2008). Constraints and conundrums resulting from ground‐deformation measurements made during the 2004–2005 dome‐building eruption of Mount St. Helens, Washington. In D. R. Sherrod, W. E. Scott, & P. H. Stauffer (Eds.), A volcano rekindled; the renewed eruption of Mount St. Helens, 2004–2006, Chap. 14, (Vol. 1750, pp. 281–300). Reston, VA: United States Geological Survey.

Hill, G. J., Bibby, H. M., Ogawa, Y., Wallin, E. L., Bennie, S. L., Caldwell, T. G., et al. (2015). Structure of the Tongariro volcanic system: Insights from magnetotelluric imaging. Earth and Planetary Science Letters, 432, 115–125. https://doi.org/10.1016/j.epsl.2015.10.003

Hill, G. J., Caldwell, T. G., Heise, W., Chertkoff, D. G., Bibby, H. M., Burgess, M. K., et al. (2009). Imaging magmatic systems using mag- netotelluric data: Mount St. Helens and Mount Adams. Nature Geoscience, 2, 785–789. https://doi.org/10.1038/ngeo661

Hobden, B. J., Houghton, B. F., Davidson, J. P., & Weaver, S. D. (1999). Small and short‐lived magma batches at composite volcanoes: Time windows at Tongariro volcano, New Zealand. Journal of the Geological Society of London, 156, 865–868.

Hurst, T., Jolly, A. D., & Sherburn, S. (2014). Precursory characteristics of the seismicity before the 6 August 2012 eruption of Tongariro volcano, North Island, New Zealand. Journal of Volcanology and Geothermal Research, 286, 294–302. https://doi.org/10.1016/j.jvolgeores.2014.03.004

Jackson, M. D., Blundy, J., & Sparks, R. S. (2018). Chemical differentiation, cold storage and remobilization of magma in the Earth's crust. Nature, 564(7736), 405–409. https://doi.org/10.1038/s41586‐018‐0746‐2

Jones, A. G., Chave, A. D., Egbert, G., Auld, D., & Bahr, K. (1989). A comparison of techniques for magnetotelluric response function estimation. Journal of Geophysical Research, 94, 14,201–14,213.

Kordy, M., Wannamaker, P., Maris, V., Cherkaev, E., & Hill, G. (2016a). Three‐dimensional magnetotelluric inversion using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers, part I: Forward problem and parameter jacobians. Geophysical Journal International, 204, 74–93.

Kordy, M., Wannamaker, P., Maris, V., Cherkaev, E., & Hill, G. (2016b). Three‐dimensional magnetotelluric inversion using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers, part II: Direct data‐space inverse solution. Geophysical Journal International, 204, 94–110.

Kouzmanov, K., & Pokrovski, G. S. (2012). Hydrothermal controls on metal distribution in porphyry Cu (‐Mo‐Au) systems. Special Publication of the Society of Economic Geologists, 16, 573–618.

Mackie, R. L., Smith, J. T., & Madden, T. R. (1994). Three‐dimensional electromagnetic modelling using finite difference equations: The magnetotelluric example. Radio Science, 29, 923–935.

Nakagawa, M., Nairn, I. A., & Kobayashi, T. (1998). The ∼10 ka multiple vent pyroclastic eruption sequence at Tongariro volcanic centre, Taupo Volcanic Zone, New Zealand. Part 2. Petrological insights into magma storage and transport during regional extension. Journal of Volcanology and Geothermal Research, 86, 45–65.

Ogawa, Y., Ichiki, M., Kanda, W., Mishina, M., & Asamori, K. (2014). Three‐dimensional magnetotelluric imaging of crustal fiuids and seismicity around Naruko volcano, NE Japan. Earth, Planets and Space, 66(158). https://doi.org/10.1186/s40623‐014‐0158‐y

Pardo, N., Cronin, S. J., Németh, K., Brenna, M., Schipper, C. I., Breard, E., et al. (2014). Perils in distinguishing phreatic from phreato-magmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. Journal of Volcanology and Geothermal Research, 286, 397–414. https://doi.org/10.1016/j.jvolgeores.2014.05.001

Parkinson, W. D. (1962). The infiuence of continents and oceans on geomagnetic variations. Geophysical Journal of the Royal Astronomical Society, 6, 441–449.

Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C., & Bachmann, O. (2017). The mechanics of shallow magma reservoir outgassing. Geochemistry, Geophysics, Geosystems, 18, 2887–2905. https://doi.org/10.1002/2017GC006912

Peacock, J. R., Mangan, M. T., McPhee, D., & Wannamaker, P. E. (2016). Three‐dimensional electrical resistivity model of the hydrothermal system in Long Valley caldera, California, from magnetotellurics. Geophysical Research Letters, 43, 7953–7962. https://doi.org/10.1002/ 2016GL069263

Peacock, J. R., Thiel, S., Heinson, G. S., & Reid, P. (2013). Time‐lapse magnetotelluric monitoring of an enhanced geothermal system. Geophysics, 78, B121–B130. https://doi.org/10.1190/geo2012‐0275.1

Pommier, A., & LeTrong, E. (2011). “SIGMELTS”: A web portal for electrical conductivity calculations in geosciences. Computational Geosciences, 37(9). https://doi.org/10.1016/j.cageo.2011.01.002

Price, R. C., Gamble, J. A., Smith, I. E. M., Maas, R., Waight, T., Stewart, R. B., & Woodhead, J. (2012). The anatomy of an andesite volcano: A time‐stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu volcano, New Zealand. Journal of Petroleum, 53(10), 2139–2189.

Siripunvaraporn, W., Egbert, G., Lenbury, Y., & Uyeshima, M. (2005). Three‐dimensional magnetotelluric: Data space method. Physics of the Earth and Planetary Interiors, 150, 3–14.

Sparks, S., Annen, C. J., Blundy, J., Cashman, K., Rust, A., & Jackson, M. D. (2019). Formation and dynamics of magma reservoirs. Philosophical Transactions of the Royal Society of London, 377.

Stix, J., & de Moor, J. M. (2018). Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth, Planets and Space, 70(83). https://doi.org/10.1186/s40623‐018‐0855‐z

Tikhonov, A. N. (1950). On determining electric characteristics of the deep layers of the Earth's crust. Doklady Akademii Nauk SSSR, 73, 295–297.

Tuttle, O. F., & Bowen, N. L. (1958). Origin of granite in light of experimental studies in the system NaAlSi3O8‐KAlSi3O8‐SiO2. Geological Society of America Memoirs, 74, 153.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る