リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A study on early afterslip following the 2011 Tohoku-Oki earthquake deduced from onshore and offshore geodetic data」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A study on early afterslip following the 2011 Tohoku-Oki earthquake deduced from onshore and offshore geodetic data

MAULIDA Putra 東北大学

2021.09.24

概要

The Tohoku-Oki earthquake (Mw 9.0) struck northeast Japan on March 11, 2011. A dense onshore geodetic network in tandem with seafloor geodetic observations captured large coseismic and postseismic deformation. Many studies have reported the afterslip distribution of this event. However, these previous studies mainly analyzed the distribution over an extended period, such as from a few dozen days to a few years. Only a handful of studies have investigated the early afterslip period of the 2011 Tohoku-Oki earthquake. Furthermore, those studies did not provide a sufficient understanding or rigorous discussion of the early afterslip area or aftershock activities. An understanding of the spatial and temporal evolution of the early afterslip, beginning immediately after such a massive interplate earthquake, is essential to understanding the frictional properties of the plate boundary. On this basis, I investigated the spatial and temporal evolution of the early afterslip following the 2011 Tohoku-Oki earthquake using on- and offshore geodetic data.

To identify the distribution of early afterslip, I utilized geodetic observations from onshore Global Navigation Satellite System (GNSS) and Ocean Bottom Pressure gauge (OBP) sites to quantify postseismic deformation during the 210 hours (approx. nine days) following the mainshock. I adopted the kinematic precise point positioning strategy and removed the sizeable coseismic displacement from the observed data associated with the large aftershocks. Next, I performed spatial filtering using common-mode error (CME) analysis. The CME analysis reduced the standard deviation of the onshore GNSS time series by 14% for the east-west component and 21% for the north-south component, mainly attributed to pillar tilting caused by thermal expansion via sunlight. The obtained time series was enhanced using principal component analysis (PCA), which reduced the signal unrelated to the postseismic deformation. Finally, I selected a combination of principal components (PCs) based on the normalized displacement field of each. Thus, the time series was reconstructed, and the cleaned time series showed an apparent trenchward postseismic deformation.

I removed the systematic effect of ocean tides, non-tidal oceanographic fluctuation, and sensor drift on the OBP time series. To estimate sea-floor deformation captured by the OBP sites, I fit the data with a logarithmic function based on decay time derived from the GNSS time series. Subsidence was captured at all the OBP sites, and the maximum displacement reached 18 cm.

I used the predicted postseismic deformation via viscoelastic relaxation from a previous study to assess this effect at the geodetic sites. The viscoelastic effect was relatively small compared to the observed data; 2% and 11% for the GNSS and OBP sites, respectively.

To estimate early afterslip distribution, I utilized L1-norm regularization, which is characterized by regularization without smoothing. I estimated the early afterslip distribution using data from GNSS and OBP sites looking at the cumulative static displacement and time dependence of the observation time series. To assess the reliability of this method for determining slip and the non-zero slip boundary, I performed a recovery test using both GNSS and OBP site data looking at assumed fault patches. The L1-norm inversion successfully recognized distinct regions of zero- and non-zero slip along the plate interface.

The main area of the estimated early afterslip was located off the shores of Iwate, Miyagi, Fukushima, and Ibaraki at a depth of 30–60 km. The slip was narrow along the dip direction with along-strike variation; the maximum slip reached 5.8 m at northern Kinka Island. The estimated afterslip moment of release during those nine days was Mw 8.16. Several fault patches were estimated to occur offshore. These were estimated to explain the subsidence at the OBP sites, and they appeared to be located where the coseismic slip was relatively small compared to the surrounding area. Based on the kinematic afterslip results, I found that the afterslip-coseismic moment ratio of the Tohoku-Oki earthquake was relatively smaller than other large earthquakes. It may relate to the rupture of the 2011 Tohoku-Oki earthquake reaching from the down-dip to the up-dip of the potential region of the coseismic slip.

The spatial extent of the afterslip was related to frictional properties, therefore I examined the decay time of the early afterslip time series in each fault patch. The decay time result shows the along strike variation. In Off Miyagi and Iwate, the decay time tend to be shorter compared to the Fukushima region. The shorter decay time may reflect a small amount of normal stress on the plate interface and/or a small “a-b” or larger k value. Considering (a-b)~0, it may reflect that the early afterslip region corresponds to the transition from velocity weakening to the velocity strengthening.

I examined the spatial relationship between the early afterslip with the down-dip limit of the interplate earthquakes and the distribution of the aftershocks. First, the estimated early afterslip distribution was consistent with the down-dip limit of the interplate earthquakes off Miyagi and Iwate. Several cross- sections along the strike direction clearly showed the different characteristics and locations of the afterslip and aftershock activities. For example, off Miyagi and Iwate, the location of afterslip tended to be in the up-dip portion of the larger afterslip area. In contrast, off Fukushima, the distribution of aftershocks was in the down-dip of the larger afterslip area. This discrepancy is attributed to along arc-variation with different structural characteristics between off Miyagi and Fukushima region.

Based on the temporal evolution of afterslip, I emphasized the relationship between early afterslip evolution and the number of aftershocks. Aftershock–afterslip temporal evolution is consistent in almost every region, although the regions off Iwate and Miyagi showed a lack of aftershocks 30 hours after the mainshock, in contrast with the estimated early afterslip. Meanwhile, I found different characteristic in Fukushima and Ibaraki, where there is abundant number of aftershocks occurred more than afterslip. Such a discrepancy shows the factors other than afterslip were contributing to triggering aftershocks.

The spatial and temporal evolution of seismic and aseismic slip is related to the properties of the plate interface. Therefore, estimating the distribution of each slip behavior will be necessary to study earthquake hazard.

この論文で使われている画像

参考文献

Agata, R., Barbot, S. D., Fujita, K., Hyodo, M., Iinuma, T., Nakata, R., Ichimura, T., & Hori, T. (2019). Rapid mantle flow with power-law creep explains deformation after the 2011 Tohoku mega-quake. Nature Communications, 10(1), 1385. doi: 10.1038/s41467-019-08984-7

Akaike, H. (1980). Likelihood and the Bayes procedure. Bayesian Statistics, eds. Bernardo, J. M., De Groot, M. H., Lindley, D. V., & Smith, A. F. M., University Press, Valencia, Spain, 143-166, doi: 10.1007/978-1-4612-1694-0_24.

Amiri-Simkooei, A. R., Snellen, M., & Simons, D. G. (2011). Principal component analysis of single-beam echo-sounder signal features for seafloor classification. IEEE Journal of Oceanic Engineering, 36, 2, 259-272. doi: 10.1109/JOE.2011.2122630.

Apel, E. V., Bürgmann, R., Steblov, G., Vasilenko, N., King, R., & Prytkov, A. (2006). Independent active microplate tectonics of northeast Asia from GPS velocities and block modeling. Geophysical Research Letters, 33, L11303, doi: 10.1029/2006GL026077.

Asano, Y., Saito, T., Ito, Y., Shiomi, K., Hirose, H., Matsumoto, T., Aoi, S., Hori, S., & Sekiguchi, S. (2011). Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space, 63, 669–673. doi: 10.5047/eps.2011.06.016

Baba, T., Hirata, K., Hori, T., & Sakaguchi, H. (2006). Offshore geodetic data conductive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake. Earth and Planetary Science Letters, 241, 281-292, doi: 10.1016/j.epsl.2005.10.019.

Bar-Sever, Y. E., Kroger P. M., & Borjesson J. A. (1998). Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. Journal of Geophysical Research, 103(B3), 5019–5035. doi: 10.1029/97JB03534

Barbot, S., & Fialko, Y. (2010). A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic reboud and viscoelastic flow. Geophysical Journal International, 182 (3), 1124-1140, doi: 10.1111/j.1365-246X.2010.04678.x.

Barnhart, W. D., Murray, J. R., Briggs, R. W., Gomez, F., Miles, C. P. J., Svarc, J., Riquelme, S., & Stressler, B. J. (2016), Coseismic slip and early afterslip of the 2015 Illapel, Chile, earthquake: Implications for frictional heterogeneity and coastal uplift, Journal of Geophysical Research, 121, 6172-6191. doi: 10.1002/2016JB013124

Bartlow, N. M., Wallaece, L. M., Beavan, R. J., Bannister, S., & Segall, P. (2014). Time-dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction zone, New Zealand. Journal of Geophysical Research: Solid Earth, 119, 734-753, doi: 10.1002/2013JB010609.

Boehm, J., Werl, B., & Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth, 111(B2), B02406. doi: 10.1029/2005JB003629

Brown, J. R., Beroza, G. C., Ide, S., Ohta, K., Shelly, D. R., Schwartz, S. Y., Rabbei, W., Thorwart, M., & Kao, H. (2009). Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophysical Research Letters, 36, L19306, doi: 10.1029/2009GL040027.

Chlieh, M., Avouac, J. P., Hjorleifsdottir, V., Song, T. R. A., Ji, C., Sieh, K., Sladen, A., Hebert, H., Prawirodirdjo, L., Bock, Y., & Galetzka, J. (2007). Coseismic slip and afterslip of the great M W 9.15 Sumatra–Andaman earthquake of 2004. Bulletin of the Seismological Society of America, 97(1A), S152–S173. doi: 10.1785/0120050631

Diao, F., Xiong, X., Wang, R., Zheng, Y., Walter, T. R., Weng, H., & Li, J. (2013). Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 Mw 9.0 Tohoku (Japan) earthquake. Geophysical Journal International, 196(1), 218–229. doi: 10.1093/gji/ggt376

Dieterich J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84, B5, 2161-2168, doi: 10.1029/JB084iB05p02161.

Dixon, T. H., Jaing, Y., Malservisi, R., McCaffrey, R., Voss, N., Protti, M., & Gonzalez, V. (2014). Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture. Proceedings of the National Academy of Sciences of the United States of America, 111(48), 17039- 17044, doi: 10.1073/pnas.1412299111.

Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., & Jamason, P. (2006). Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of geophysical research: Solid Earth, 111(B3), B03405. doi: 10.1029/2005JB003806

Donoho, D. L., & Tanner, J. (2006). Neighborliness of randomly projected simplices in high dimensions. Proceedings of the National Academy of Sciences of the United States of America, 102 (27), 9452- 9457, doi: 10.1073/pnas.0502258102.

Evans, E. L., Loveless, J. P., Meade, B. J. (2015). Total variation regularization of geodetically and geologically constrained block models for the Western United States. Geophysical Journal International, 202(2), 713-727, doi: 10.1093/gji/ggv164

Evans, E. L., & Meade, B. J. (2012). Geodetic imaging of coseismic slip and postseismic afterslip: Sparsity promoting methods applied to the great Tohoku earthquake. Geophysical Research Letters, 39(11), L11314. doi: 10.1029/2012GL051990

Freed, A. M. (2005). Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33, 335-367, doi: 10.1146/annurev.earth.33.092203.122505.

Fukuda, J., Johnson, K. M., Larson, K. M., & Miyazaki, S. (2009). Fault friction parameters inferred from the early stages of afterslip following the 2003 Tokachi-oki earthquake, Journal of Geophysical Research: Solid Earth, 114, B04412, doi: 10.1029/2008JB006166.

Gahalaut, V. K., Jade, S., Catherine, J. K., Gireesh, R., Ananda, M. B., Kumar, P., Narsaiah, M., Jafri, S. S. H., Ambikapathy, A., Bansai, A., Chadha, R. K., Gupta, D. C., Nagarajan, B., & Kumar, S. (2008). GPS measurements of postseismic deformation in the Andaman-Nicobar region following the giant 2004 Sumatra-Andaman earthquake. Journal of Geophysical Research: Solid Earth, 113, B08401, doi: 10.1029/2007JB005511.

Gualandi, A., Perfettini, H., Radiguet, M., Cotte, N., & Kostoglodov, V. (2017). GPS deformation related to the Mw 7.3, 2014, Papanoa earthquake (Mexico) reveals the aseismic behavior of the Guerrero seismic gap. Geophysical Research Letters, 44, 6039-6047, doi: 10.1002/2017GL072913.

Hashimoto, C., Noda, A., Sagiya, T., & Matsu’ura, M. (2009). Interplate seismogenic zones along the Kuril- Japan trench inferred from GPS data inversion. Nature Geoscience, 2, 141–144. doi: 10.1038/NGEO42

Hatanaka, Y., Iizuka, T., Sawada, M., Yamagiwa, A., Kikuta, Y., Johnson J. M., & Rocken, C. (2003). Improvement of the Analysis Strategy of GEONET. Bulletin of the Geographical Survey Institute, 49, 11-37.

He, P., Hetland, E.A., Wang, Q., Ding, K., Wen, Y., & Zou, R. (2017). Coseismic slip in the 2016 Mw 7.8 Ecuador earthquake imaged from Sentinel-1A radar interferometry. Seismological Research Letter. 88(2A): 277-286. doi: 10.1785 /0220160151.

Heki, K., & Tamura, Y. (1997). Short term afterslip in the 1994 Sanriku-Haruka-Oki Earthquake. Geophysical Research Letters, 24(24), 3285–3288. doi: 10.1029/97GL03316

Helmstetter, A., & Shaw, B. E. (2009). Afterslip and aftershocks in the rate-and-state friction law. Journal of Geophysical Research: Solid Earth, 114, B01308, doi: 10.1029/2007JB005077.

Hino, R., Inazu, D., Ohta, Y., Ito, Y., Suzuki, S., Iinuma, T., Osada, Y., Kido, M., Fujimoto, H., & Kaneda, Y. (2014). Was the 2011 Tohoku-Oki earthquake preceded by aseismic preslip? Examination of seafloor vertical deformation data near the epicenter. Marine Geophysical Research, 35, 181-190, doi: 10.1007/s11001-013-9208-2.

Hirata, Y., & Ohta, Y. (2016). Spatial and temporal characteristics of optimum process noise values of tropospheric parameters for kinematic analysis of Global Navigation Satellite System (GNSS) sites in Japan. Earth, Planets and Space, 68(1), 203–216. doi: 10.1186/s40623-016-0578-y

Hirose, F., Nakajima, J., & Hasegawa, A. (2008a), Three-dimensional velocity structure and configuration of the Philippine Sea slab beneath, Kanto District, Central Japan, estimated by double-difference tomography [in Japanese with English Abstract], Zisin, 60, pp 123–138.

Hirose, F., Nakajima, J., & Hasegawa, A. (2008b), Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography, Journal of Geophysical Research, 113, B09315, doi: 10.1029/2007JB005274.

Hobbs, T.E., Kyriakopoulos, C., Newman, A.V., Protti, M., & Yao, D., 2017. Large and primarily updip afterslip following the 2012 Mw 7.6 Nicoya, Costa Rica, earth- quake. Journal of Geophysical Research: Solid Earth 122 (7), 5712–5728. doi: 10.1002 /2017JB014035.

Hsu, Y.J., Simons, M., Avouac, J.P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., & Bock, Y. (2006). Frictional Afterslip Following the 2005. Science 312 (5782), 1921–1926. https://doi.org/10.1126/science.1126960.

Hu, Y., Bürgmann, R., Freymueller, J.T., Banerjee, P., & Wang, K. (2014). Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake. Earth, Planets and Space, 66(1), 1-10, doi: 10.1186/1880-5981-66-106.

Hyndman, R. D., & Peacock, S. M. (2003). Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212(3-4), 417-432. doi: 10.1016/S0012-821X(03)00263-2.

Ide, S., Baltay, A., & Beroza, G. C. (2011). Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science, 332(6036), 1426–1429. doi: 10.1126/science.1207020

Igarashi, T., Matsuzawa, T., Umino, N., & Hasegawa, A. (2001). Spatial distribution of focal mechanisms for interplate and intraplate earthquakes associated with the subducting Pacific plate beneath the northeastern Japan arc: A triple-planed deep seismic zone. Journal of Geophysical Research: Solid Earth, 106(B2), 2177–2191. doi: 10.1029/2000JB900386

Iinuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y., Ohzono, M., Tsushima, H., Suzuki, S., Fujimoto, H., & Miura, S. (2012). Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. Journal of Geophysical Research, 117, B07409, doi: 10.1029/2012JB009186.

Iinuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y., Ohzono, M., Tsushima, H., Suzuki, S., Fujimoto, H., & Miura, S. (2012). Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (M9.0) refined by means of seafloor geodetic data. Journal of Geophysical Research, 117, B07409, doi: 10.1029/2012JB009186.

Iinuma, T., Hino, R., Uchida, N., Nakamura, W., Kido, M., Osada, Y., & Miura, S. (2016). Seafloor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake. Nature Communications, 7, 13506, doi: 10.1038/ncomms13506.

Inazu, D., Hino, R., & Fujimoto, H. (2012). A global barotropic ocean model driven by synoptic atmospheric disturbances for detecting seafloor vertical displacements from in situ ocean bottom pressure measurements. Marine Geophysical Research, 33, 127-148, doi: 10.1007/s11001-012-9151- 7.

Ishikawa, N., & Hashimoto, M. (1999). Average horizontal crustal strain rates in Japan during interseismic period deduced from geodetic surveys (Part 2). zisin, 52(2), 299–315. doi: 10.4294/zisin1948.52.2_299

Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., Ohta, Y., Iinuma, T., Ohzono, M., Miura, S., Mishina, M., Suzuki, K., Tsuji, T., & Ashi, J. (2013). Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics, 600, 14-26, doi: 10.1016/j.tecto.2012.08.022

Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., Tsushima, H., Hino, R., & Fujimoto, H. (2011). Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophysical Research Letters, 38, L00G05, doi: 10.1029/2011GL048355.

Jiang, Y., Wdowinski, S., Dixon, T. H., Hackl, M., Protti, M., & Gonzalez, V. (2012). Slow slip events in Costa Rica detected by continuous GPS observations, 2002-2011. Geochemistry, Geophysics, Geosystems, 13, Q04006, doi: 10.1029/2012GC004058.

Johnson, K.M., Bürgmann, R. & Larson, K. (2006). Factional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake. Bulletin of the Seismological Society of America, 96(4B), 321-338, doi: 10.1785/0120050808.

Kato, A., & Igarashi, T. (2012). Regional extent of the large coseismic slip zone of the 2011 Mw 9.0 Tohoku-Oki earthquake delineated by on-fault aftershocks. Geophysical Research Letters, 39(15), L15301. doi: 10.1029/2012GL052220.

Kato, A., Miyatake, T., & Hirata, N. (2010). Asperity and Barriers of the 2004 Mid-Niigata Prefecture Earthquake Revealed by Highly Dense Seismic Observations. Bulletin of the Seismological Society of America, 100(1), 298–306. doi: 10.1785/0120090218

Kato, T. (1979). Crustal movements in the tohoku district, Japan, during the period 1900-1975, and their tectonic implications. Tectonophysics, 60, 141-167, doi: 10.1016/0040-1951(79)90156-2.

Kawamoto, S., Ohta, Y., Hiyama, Y., Todoriki, M., Nishimura, T., Furuya, T., Sato, Y., Yahagi T., & Miyagawa, K. (2017). REGARD: A new GNSS-based real-time finite fault modeling system for GEONET. Journal of Geophysical Research, 122(2), 1324–1349. doi: 10.1002/2016JB013485

Kido, M., Osada, Y., Fujimoto, H., Hino, R., & Ito, Y. (2011). Trench normal variation in observed seafloor displacements associated with the 2011 Tohoku-Oki Earthquake. Geophysical Research Letters, 38, L24303, doi: 10.1029/2011GL050057.

Kimura, H., Tadokoro, K., & Ito, T. (2019). Interplate coupling distribution along the Nankai Trough in southwest Japan estimated from the block motion model based on onshore GNSS and seafloor GNSS/A observations. Journal of Geophysical Research: Solid Earth, 124, 6140-6164, doi: 10.1029/2018JB016159.

Kita, S., Okada, T., Hasegawa, A., Nakajima, J., & Matsuzawa, T. (2010). Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido, northeastern Japan. Tectonophysics, 496(1–4), 68–82. doi: 10.1016/j.tecto.2010.10.010

Koper, K. D., Hutko, A. R., Lay, T., Ammon, C. J., & Kanamori, H. (2011). Frequency-dependent rupture process of the 2011 M-w 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth Planets and Space, 63(7), 599-602, L21309. doi: 10.5047/eps.2011.05.026

Kreemer, C., Lavallée, D. A., Blewitt, G., & Holt, W. E. (2006). On the stability of a geodetic no-net rotation frame and its implication for the International Terrestrial Reference Frame. Geophysical Research Letters, 33(17), L17306. doi: 10.1029/2006GL027058

Kurahashi, S., & Irikura, K. (2011). Source model for generating strong ground motions during the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets and Space, 63(7), 571-576. doi: 10.5047/eps.2011.06.044

Langbein, J., Murray, J. R., & Snyder, H. A. (2006). Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by Global Positioning System, electronic distance meter, creepmeters, and borehole strainmeters. Bulletin of the Seismological Society of America, 96(4B), S304-S320, doi: 10.1785/0120050823.

Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H., & Rushing, T. H. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research: Solid Earth, 117(B4), B04311. doi: 10.1029/2011JB009133.

Lichten SM, Border JS (1987) Strategies for high-precision Global Positioning System orbit determination. Journal of Geophysical Research: Solid Earth, 92(B12):12751–12762. doi:10.1029/JB092iB12p12751.

Liu, Y., & Rice, J. R. (2005). Aseismic slip transients emerge spontaneously in three-dimensional rate and state modeling of subduction earthquake sequences. Journal of Geophysical Research: Solid Earth, 110, B08307, doi: 10.1029/2004JB003424.

Loveless, J., & Meade, B. (2010). Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. Journal of Geophysical Research, 115(B2), 1-35, doi: 10.1029/2008jb006248

Malservisi, R., Schwartz, S. Y., Voss, N., Protti, M., Gonzalez, V., Dixon, T. H., Jiang, Y., Newman, A. V., Richardson, J., Walter, J. I., & Voyenko, D. (2015). Multiscale postseismic behavior on a megathrust: The 2012 Nicoya earthquake, Costa Rica. Geochemistry, Geophysics, Geosystems, 16(6), 1848-1864. doi: 10.1002/2015GC005794

Marone, C. J., Scholtz, C. H., & Bilham, R. (1991). On the mechanics of earthquake afterslip. Journal of Geophysical Research: Solid Earth, 96 (B5), 8441-8452. doi: 10.1029/91JB00275.

Masalu, D. C. P., Tamaki, K., & Sager, W. W. (1997). Paleomagnetism of the Joban Seamount Chain: Its origin and tectonic implications for the Pacific plate. Journal of Geophysical Research: Solid Earth, 102(B3), 5145–5155. doi: 10.1029/96JB03624

Matsumoto, K., Takanezawa, T., & Ooe, M. (2000). Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan. Journal of Oceanography, 56, 567–581.

Meade, B. J., & Loveless, J. P. (2009). Block modeling with connected fault-network geometries and a linear elastic coupling estimator in spherical coordinates. Bulletin of the Seismological Society of America, 99 (6), 3124-3139, doi: 10.1785/0120090088.

Melbourne, T. I., & Webb, F. H. (2002). Precursory transient slip during the 2001 MW=8.4 Peru earthquake sequence from continuous GPS. Geophysical Research Letters, 29, 21, 2032, doi: 10.1029/2002GL015533.

Meng, L., Inbal, A., & Ampuero, J. P. (2011). A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake. Geophysical Research Letters, 38(7), L00G07. doi: 10.1029/2011GL048118

Mitsui, Y., & Heki, K. (2013). Scaling of early afterslip velocity and possible detection of tsunami-induced subsidence by GPS measurements immediately after the 2011 Tohoku-Oki earthquake. Geophysical Journal International, 195, 238-248, doi: 10.1093/gji/ggt256.

Miyazaki, S., & Larson, K. M. (2008). Coseismic and early postseismic slip for the 2003 Tokachi-oki earthquake sequence inferred from GPS data. Geophysical Research Letters, 35(4), L12608. doi: 10.1029/2007GL032309

Miyazaki, S., Segall, P., Fukuda, J., & Kato, T. (2004). Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties. Geophysical Research Letters, 31, L06623, doi: 10.1029/2003GL019410.

Moreno, M., Rosenau, M., & Oncken, O. (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312), 198-202. doi: 10.1038/nature09349.

Mori, N., Cox, D. T., Yasuda, T., & Mase, H. (2013). Overview of the 2011 Tohoku Earthquake Tsunami damage and its relation to coastal protection along the Sanriku Coast. Earthquake Spectra, 29, 127- 143, doi: 10.1193/1.4000118.

Munekane, H. (2012). Coseismic and early postseismic slips associated with the 2011 off the Pacific coast of Tohoku Earthquake sequence: EOF analysis of GPS kinematic time series. Earth, Planets and Space, 64, 1077-1091. doi: 10.5047/eps.2012.07.009.

Murotani, T., Kikuchi, M., Yamanaka, Y. (2003). Rupture processes of large Fukushima-oki earthquakes in 1938, Abstract 2003 Japan Geoscience Union Meeting, S052-003.

Muto, J., Moore, J. D. P., Barbot, S., Iinuma, T., Ohta, Y., & Iwamori, H. (2019). Coupled afterslip and transient mantle flow after the 2011 Tohoku earthquake. Science Advances, 5 (9), eaaw1164, doi: 10.1126/sciadv.aaw1164.

Márquez-Azúa, B., & DeMets, C. (2003). Crustal velocity field of Mexico from continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of Mexico. Journal of Geophysical Research: Solid Earth, 108 (B9), 2450, doi: 10.1029/2002JB002241.

Nagai, R., Kikuchi, M., & Yamanaka, Y. (2001). Comparative Study on the Source Processes of Recurrent Large Earthquakes in Sanriku-oki Region: the 1968 Tokachi-oki Earthquake and the 1994 Sanriku- oki Earthquake. zisin, 54(2), 267-280, doi: 10.4294/zisin1948.54.2_267

Nakajima, J., & Hasegawa, A. (2006), Anomalous low-velocity zone and linear alignment of seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of subducted fracture zone? Geophysical Research Letters, 33(16), L16309, doi: 10.1029/2006GL026773.

Nakajima, J., Hirose, F., & Hasegawa, A. (2009), Seismotectonics beneath the Tokyo metropolitan area, Japan: Effect of slab-slab contact and overlap on seismicity, Journal of Geophysical Research, 114(B8), B08309, doi: 10.1029/2008JB006101.

National Police Agency in Japan (2021). Police countermeasures and damage situation associated with 2011 Tohoku district – off the Pacific Ocean earthquake. March 10, 2021. https://www.npa.go.jp/news/other/earthquake2011/pdf/higaijokyo_e.pdf.

Nishimura, T., Miura, S., Tachibana, K., Hashimoto, K., Sato, T., Hori, S., Murakami, E., Kono, T., Nida, K., Mishina, M., Hirasawa, T., & Miyazaki, S. (2000). Distribution of seismic coupling on the subducting plate boundary in northeastern Japan inferred from GPS observations. Tectonophysics, 323, 217-238, doi: 10.1016/S0040-1951(00)00108-6.

Nishimura, T., Imakiire, T., Yarai, H., Ozawa, T., Murakami, M., & Kaidzu, M. (2003). A preliminary fault model of the 2003 July 26, M6.4 northern Miyagi earthquake, northeastern Japan, estimated from joint inversion of GPS, leveling, and InSAR data. Earth, Planets and Space, 55, 751-757, doi: 10.1186/BF03352484.

Nishimura, T., Munekane, H., & Yarai, H. (2011). The 2011 off the Pacific coast of Tohoku Earthquake and its aftershocks observed by GEONET. Earth, Planets and Space, 63(7), 631–636. doi: 10.5047/eps.2011.06.025

Ohta, Y., Freymueller, J. T., Hreinsdóttir, S., & Suito, H. (2006). A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth and Planetary Science Letters, 247, 108-116, doi: 10.1016/j.epsl.2006.05.013.

Ohta, Y., Hino, R., Inazu, D., Ohzono, M., Ito, Y., Mishina, M., Iinuma, T., Nakajima, J., Osada, Y., Suzuki, K., Fujimoto, H., Tachibana, K., Demachi, T., & Miura, S. (2012). Geodetic constraints on afterslip characteristics following the March 9, 2011, Sanriku-Oki earthquake, Japan. Geophysical Research Letters, 39, L16304, doi: 10.1029/2012GL052430.

Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R., Takasu, T., et al. (2012a). Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0). Journal of Geophysical Research, 117(B2), B02311. doi: 10.1029/2011JB008750

Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.

Outerbridge, K. C., Dixon, T. H., Schwartz, S. Y., Walter, J. I., Protti, M., Gonzalez, V., Biggs, J., Thorwart, M., & Rabbel, W. (2010). A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica. Journal of Geophysical Research: Solid Earth, 115, B10408, doi: 10.1029/2009JB006845.

Ozawa, S., Nishimura, T., Munekane, H., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2012). Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. Journal of Geophysical Research: Solid Earth, 117, B07404, doi: 10.1029/2011JB009120.

Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., & Imakiire, T. (2011). Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356), 373–376. doi: 10.1038/nature10227

Panuntun, H., Miyazaki, S., Fukuda, Y., & Orihara, Y. (2018). Probing the Poisson’s ratio of poroelastic rebound following the 2011 MW 9.0 Tohoku earthquake. Geophysical Journal International, 215, 2206-2221, doi: 10.1093/gji/ggy403.

Perfettini, H., & Ampuero, J. P. (2008). Dynamics of a velocity strengthening fault region: Implications for slow earthquakes and postseismic slip. Journal of Geophysical Research: Solid Earth, 113(9), 1-22, doi: 10.1029/2007JB005398

Perfettini, H., & Avouac, J. P. (2004). Stress transfer and strain rate variations during the seismic cycle. Journal of Geophysical Research: Solid Earth, 109(6), 1-8, doi: 10.1029/2003JB002917

Pollitz, F. F., Wicks, C., & Thatcher, W. (2001). Mantle flow beneath a continental strike-slip fault: postseismic deformation after the 1999 Hector Mine earthquake. Science, 293, 1814-1818, doi: 10.1126/science.1061361.

Rice, J. R., & Gu, J. (1983). Earthquake aftereffects and triggered seismic phenomena. pure and applied geophysics, 121, 187-219, doi: 10.1007/BF02590135.

Sagiya, T. (2004). A decade of GEONET: 1994–2003 —The continuous GPS observation in Japan and its impact on earthquake studies—. Earth, Planets and Space, 56, xxix–xli. doi: 10.1186/BF03353077

Santosa, F., Symes, W. W., & Raggio, G. (1987). Inversion of band-limited reflection seismograms using stacking velocities as constraints. Inverse Problems, 3(3), 477-499, doi: 10.1088/0266-5611/3/3/015

Sato, M., Ishikawa, T., Ujihara, N., Yoshida, S., Fujita, M., Mochizuki, M., & Asada, A. (2011). Displacement above the hypocenter of the 2011 Tohoku-Oki Earthquake. Science, 332 (6036), 1395, doi: 10.1126/science.1207401.

Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research: Solid Earth, 88(B6), 4984-4996, doi: 10.1029/JB088iB06p04984.

Savage, J. C., Svarc, J. L., & Yu, Shui Beih (2007). Postseismic relaxation and aftershocks. Journal of Geophysical Research: Solid Earth, 112(6), 1-19, doi: 10.1029/2006JB004584

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391, 37-42, doi: 10.1038/34097.

Sella, G. F., Dixon, T. H., & Mao, A. (2002). REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth, 107(B4), 2081, doi: 10.1029/2000JB000033.

Shiina, T., Nakajima, J., & Matsuzawa, T. (2013). Seismic evidence for high pore pressures in the oceanic crust: Implications for fluid-related embrittlement. Geophysical Research Letters, 40(10), 2006– 2010. doi: 10.1002/grl.50468

Shimozono, T., Cui, H., Pietrzak, J. D., Fritz, H. M., Okayasu, A. & Hooper, A. J. (2014). Short wave amplification and extreme runup by the 2011 Tohoku tsunami. Pure and Applied Geophysics, 171, 3217-3228, doi: 10.1007/s00024-014-0803-1.

Silverii, F., Cheloni, D., D'Agostino, N., Selvaggi, G., & Boschi, E. (2014). Post-seismic slip of the 2011 Tohoku-Oki earthquake from GPS observations: implications for depth-dependent properties of subduction megathrusts. Geophysical Journal International, 198(1), 580-596. doi: 10.1093/gji/ggu149

Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owem S. E., Meng, L., Ampuero, J-P., Wei, S., Chu, R., Helmberger, D. V., Kanamori, H., Hetland, E., Moore, A. W., & Webb, F. H. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science, 332, 1421-1425, doi: 10.1126/science.1206731.

Smith, B., & Sandwell, D. (2004). A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle, Journal of Geophysical Research: Solid Earth, 109(B12), B12401. doi: 10.1029/2004JB003185

Suito, H., Iizuka, M., & Hirahara, K. (2002). 3-D viscoelastic FEM modeling of crustal deformation in northeast Japan. Earthquake Processes: Physical Modelling, Numerical Simulation and Data Analysis Part II, 2239-2259, doi: 10.1007/978-3-0348-8197-5_5.

Sun, T., Wang, K., Iinuma, T., Hino, R., He., J., Fujimoto, H., Kido, M., Osada, Y., Miura, S., Ohta, Y., & Hu, Y. (2014). Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake. Nature, 514, 84-87, doi: 10.1038/nature13778.

Suwa, Y., Miura, S., Hasegawa, A., Sato, T., & Tachibana, K. (2006). Interplate coupling beneath NE Japan inferred from three-dimensional displacement field. Journal of Geophysical Research: Solid Earth, 111, B04402, doi: 10.1029/2004JB003203.

Tamura, Y., Sato, T., Ooe, M., & Ishiguro, M. (1991). A procedure for tidal analysis with a Bayesian information criterion. Geophysical Journal International, 104, 507-516, doi: 10.1111/j.1365- 246X.1991.tb05697.x.

Tanioka, Y., Ruff, L., & Satake, K. (1997). What controls the lateral variation of large earthquake occurrence along the Japan Trench? Island Arc, 6, 261-266, doi: 10.1111/j.1440-1738.1997.tb00176.x.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological). 58, 1, 267-288, doi: 10.1111/j.2517-6161.1996.tb02080.x

Tomita, F., Iinuma, T., Ohta, Y., Hino, R., Kido, M., & Uchida, N. (2020). Improvement on spatial resolution of a coseismic slip distribution using postseismic geodetic data through a viscoelastic inversion. Earth, Planets and Space, 72, 84, doi: 10.1186/s40623-020-01207-0.

Tomita, F., Kido, M., Osada, Y., Hino, R., Ohta, Y., & Iinuma, T. (2015). First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique, Geophysical Research Letters, 42, 8391-8397, doi: 10.1002/2015GL065746.

Tsang, L. L. H., Vergnolle, M., Twardzik, C., Sladen, A., Nocquet, J. M., Rolandone, F., Agurto-Detzel, H., Cavalié, Jarrin, P., & Mothes, P. (2019). Imaging rapid early afterslip of the 2016 Pedernales earthquake, Ecuador. Earth and Planetary Science Letters, 524, 115724, doi: 10.1016/j.epsl.2019.115724.

Tse, S. T., & Rice, J. R. (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research: Solid Earth, 91, 9452-9472, doi: 10.1029/JB091iB09p09452.

Tsuji, H., Hatanaka, Y., Sagiya, T., & Hashimoto, M. (1995). Coseismic crustal deformation from the 1994 Hokkaido-Toho-Oki Earthquake monitored by a nationwide continuous GPS array in Japan. Geophysical Research Letters, 22, 1669-1672, doi: 10.1029/95GL01659.

Tsuji, Y., Nakajima, J., & Hasegawa, A. (2008). Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications for water transportation in subduction zones. Geophysical Research Letters, 35(14), L14308. doi: 10.1029/2008GL034461

Twardzik, C., Vergnolle, M., Sladen, A. & Avallone, A. (2019). Unravelling the contribution of early postseismic deformation using sub-daily GNSS positioning. Scientific Reports, 9, 1775, doi: 10.1038/s41598-019-39038-z.

Van den Berg, E., & Friedlander, M. P. (2008). Probing the pareto frontier for Basis Pursuit Solutions. SIAM Journal of Scientific Computing, 31(2), 890-912, doi: 10.1137/080714488.

Van den Berg, E., & Friedlander, M. P. (2011). Sparse optimization with least-squares constraints, SIAM Journal of Scientific on Optimization, 21(4), 1201-1229, doi: 10.1137/100775028.

Vignym C., Socquet, A., Peyrat, S., Ruegg, J. C., Métois, M., Madariaga, R., Morvan, S., Lancieri, M., Lacassin, R., Campos, J., Carrizo, D., Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda, C., Valderas-Bermejo, M. C., Ortega, I., Bondoux, F., Baize, S., Lyon-Caen, H., Pavez, A., Vilotte, J. P., Bevis, M., Brooks, B., Smalley, R., Parra, H., Baez, J. C., Blanco, M., Cimbaro, S., & Kendrick, E. (2011). The 2010 MW 8.8 Maule Megathrust Earthquake of Central Chile, monitored by GPS. Science, 332, 1417-1421, doi: 10.1126/science.1204132.

Villegas-Lanza, J. C., Nocquet, J. M., Rolandone, F., Vallée, M., Tavera, H., Bondoux, F.,... & Chlieh, M. (2016). A mixed seismic–aseismic stress release episode in the Andean subduction zone. Nature Geoscience, 9(2), 150-154.

Wallace, L. M., & Beavan, J. (2010). Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. Journal of Geophysical Research: Solid Earth, 115, B12402, doi: 10.1029/2010JB007717.

Wang, L., Liu, J., Zhao, J. & Zhao,J. (2016) Tempo-Spatial Impact of the 2011 M9 Tohoku-Oki Earthquake on Eastern China. Pure Appl. Geophys. 173, 35–47, doi: 10.1007/s00024-015-1121-y.

Wang, K., Hu, Y., & He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484, 327-332, doi: 10.1038/nature11032.

Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich, J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth, 102(B8), 18057–18070. doi: 10.1029/97JB01378

Wearn, R. B. Jr., & Larson, N. G. (1982). Measurements of the sensitivities and drift of Digiquartz pressure sensors. Deep Sea Research Part A. Oceanographic Research Papers, 29, 111-134, doi: 10.1016/0198-0149(82)90064-4.

Wennerberg, L., & Sharp, R. V. (1997). Bulk-friction modeling of afterslip and the modified Omori law. Tectonophysics, 277, 109-136, doi: 10.1016/S0040-1951(97)00081-4.

Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., Miller, M., & Johnson, D. J. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth, 109(B3), B03412. doi: 10.1029/2003JB002741

Woessner, J., Schorlemmer, D., Wiemer, S., & Mai, P. M. (2006). Spatial correlation of aftershock locations and on-fault main shock properties. Journal of Geophysical Research: Solid Earth, 111(B8), B08301. doi: 10.1029/2005JB003961

Yabuki, T., & Matsu’ura, M. (1992). Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophysical Journal International, 109, 363-375, doi: 10.1111/j.1365-246X.1992.tb00102.x.

Yamagiwa, A., Hatanaka, Y., Yutsudo, T., & Miyahara, B. (2006). Real-time capability of GEONET system and its application to crust monitoring, Bulletin of the Geographical Survey Institute, 53, 27–33.

Yamagiwa, S., Miyazaki, S., Hirahara, K., & Fukahata, Y. (2015). Afterslip and viscoelastic relaxation following the 2011 Tohoku-oki earthquake (Mw9.0) inferred from inland GPS and seafloor GPS/Acoustic data. Geophysical Research Letters, 42(1), 66–73. doi: 10.1002/2014GL061735

Yamanaka, Y., & Kikuchi, M. (2003). Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves, Earth, Planets and Space, 55, e21-e24, doi: 10.1186/BF03352479.

Yamanaka, Y., & Kikuchi, M. (2004). Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, Journal of Geophysical Research: Solid Earth, 109, B07307, doi: 10.1029/2003JB002683.

Yao, H., Gerstoft, P., Shearrer, P. M., Mecklenbräuker, C. (2011). Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophysical Research Letters, 38, L20310, doi: 10.1029/2011GL049223.

Yokota, Y., & Ishikawa, T. (2020). Shallow slow slip events along the Nankai Trough detected by GNSS-A. Science Advances, 6 (3)., eaay5786, doi: 10.1126/sciadv.aay5786.

Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., & Asada, A. (2016). Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature, 534, 374-377, doi: 10.1038/nature17632.

Yu, W., Song, T-R. A., & Silver, P. G. (2013). Repeating aftershocks of the great 2004 Sumatra and 2005 Nias earthquakes. Journal of Asian Earth Sciences, 67-68, 153-170, doi: 10.1016/j.jseaes.2013.02.018.

Yue, H., Lay, T., Schwartz. S. Y., Rivera, L., Protti, M., Dixon, T. H., Owen S., & Newman, A. V. (2013). The 5 September 2012 Nicoya, Costa Rica Mw 7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. Journal of Geophysical Research: Solid Earth, 118, 5453-5466, doi: 10.1002/jgrb.50379.

Zhai, G., & Shirzaei, M. (2017). 3-D modeling of irregular volcanic sources using sparsity-promoting inversions of geodetic data and boundary element method. Journal of Geophysical Research: Solid Earth, 122(12), 10,515-10,537, doi: 10.1002/2017JB014991.

Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005–5017. doi: 10.1029/96JB03860

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る