リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Alteration of the immune environment in bone marrow from children with recurrent B cell precursor acute lymphoblastic leukemia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Alteration of the immune environment in bone marrow from children with recurrent B cell precursor acute lymphoblastic leukemia

Mikami, Takashi 京都大学 DOI:10.14989/doctor.k24085

2022.05.23

概要

Due to the considerable success of cancer immunotherapy for leukemia, the tumor immune environment has become a focus of intense research; however, there are few reports on the dynamics of the tumor immune environment in leukemia. Here, we analyzed the tumor immune environment in pediatric B cell precursor acute lymphoblastic leukemia by analyzing serial bone marrow samples from nine patients with primary and recurrent disease by mass cytometry using 39 immunophenotype markers, and transcriptome analysis. High-dimensional single-cell mass cytometry analysis elucidated a dynamic shift of T cells from naïve to effector subsets, and clarified that, during relapse, the tumor immune environment comprised a T helper 1-polarized immune profile, together with an increased number of effector regulatory T cells. These results were confirmed in a validation cohort using conventional flow cytometry. Furthermore, RNA transcriptome analysis identified the upregulation of immune-related pathways in B cell precursor acute lymphoblastic leukemia cells during relapse, suggesting interaction with the surrounding environment. In conclusion, a tumor immune environment characterized by a T helper 1-polarized immune profile, with an increased number of effector regulatory T cells, could contribute to the pathophysiology of recurrent B cell precursor acute lymphoblastic leukemia. This information could contribute to the development of effective immunotherapeutic approaches against B cell precursor acute lymphoblastic leukemia relapse.

KEYWORDS
B cell leukemia, immune response, regulatory T cell, relapse, Th1

この論文で使われている画像

参考文献

1. Malard F, Mohty M. Acute lymphoblastic leukaemia. The Lancet. 2020;395:1146-1162.

2. Kelly ME, Lu X, Devidas M, et al. Treatment of relapsed precursor-B acute lymphoblastic leukemia with intensive chemotherapy: POG (Pediatric Oncology Group) study 9411 (SIMAL 9). J Pediatr Hematol Oncol. 2013;35:509-513.

3. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in chil- dren and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439-448.

4. Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376:836-847.

5. Patrick AB, Lingyun J, Xinxin X, et al. A randomized phase 3 trial of Blinatumomab Vs. chemotherapy as post-reinduction therapy in high and intermediate risk (HR/IR) first relapse of B-acute lym- phoblastic leukemia (B-ALL) in children and adolescents/young adults (AYAs) demonstrates superior efficacy and tolerability of Blinatumomab: A report from children's oncology group study AALL1331. Blood. 2019;134(Supplement_2):LBA–1.

6. Bonomo A, Monteiro AC, Goncalves-Silva T, Cordeiro-Spinetti E, Galvani RG, Balduino A. A T cell view of the bone marrow. Front Immunol. 2016;7:184.

7. Aoki T, Takami M, Takatani T, et al. Activated invariant natural killer T cells directly recognize leukemia cells in a CD1d-independent manner. Cancer Sci. 2020;111:2223-2233.

8. Hohtari H, Bruck O, Blom S, et al. Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL. Leukemia. 2019;33:1570-1582.

9. Blaeschke F, Willier S, Stenger D, et al. Leukemia-induced dys- functional TIM-3(+)CD4(+) bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients. Leukemia. 2020;34(10):2607-2620.

10. Hirahara K, Nakayama T. CD4+ T-cell subsets in inflamma- tory diseases: beyond the Th1/Th2 paradigm. Int Immunol. 2016;28:163-171.

11. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775-787.

12. Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and dif- ferentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30:899-911.

13. Ohkura N, Hamaguchi M, Morikawa H, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell de- velopment. Immunity. 2012;37:785-799.

14. Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity. 2019;50:302-316.

15. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110:2080-2089.

16. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109-118.

17. Bhattacharya K, Chandra S, Mandal C. Critical stoichiomet- ric ratio of CD4+ CD25+ FoxP3+ regulatory T cells and CD4+ CD25- responder T cells influence immunosuppression in pa- tients with B-cell acute lymphoblastic leukaemia. Immunology. 2014;142(1):124-139.

18. Idris SZ, Hassan N, Lee LJ, et al. Increased regulatory T cells in acute lymphoblastic leukemia patients. Hematology. 2015;20:523-529.

19. Salem ML, El-Shanshory MR, Abdou SH, et al. Chemotherapy al- ters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia. Immunopharmacol Immunotoxicol. 2018;40:158-167.

20. Gadalla R, Noamani B, MacLeod BL, et al. Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials. Front Oncol. 2019;9:415.

21. Hartmann FJ, Simonds EF, Bendall SC. A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci Rep. 2018;8:10770.

22. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.

23. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

24. Harvey RC, Mullighan CG, Wang X, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lympho- blastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteris- tics, and outcome. Blood. 2010;116:4874-4884.

25. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267-273.

26. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrich- ment analysis: a knowledge-based approach for interpret- ing genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-15550.

27. Nowicka M, Krieg C, Crowell HL, et al. CyTOF workflow: differen- tial discovery in high-throughput high-dimensional cytometry data- sets. F1000Res. 2017;6:748.

28. Weber LM, Nowicka M, Soneson C, Robinson MD. diffcyt: Differential discovery in high-dimensional cytometry via high- resolution clustering. Commun Biol. 2019;2:183.

29. Chevrier S, Crowell HL, Zanotelli VRT, Engler S, Robinson MD, Bodenmiller B. Compensation of Signal Spillover in Suspension and Imaging Mass Cytometry. Cell Syst. 2018;6(5):612-620.e5.

30. el Amir AD, Davis KL, Tadmor MD, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic hetero- geneity of leukemia. Nat Biotechnol. 2013;31:545-552.

31. Van Gassen S, Callebaut B, Van Helden MJ, et al. FlowSOM: Using self-organizing maps for visualization and interpretation of cytome- try data. Cytometry A. 2015;87:636-645.

32. Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res. 2011;317:620-631.

33. Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immuno- therapy. Curr Opin Immunol. 2014;27:1-7.

34. Tominaga K, Yoshimoto T, Torigoe K, et al. IL-12 synergizes with IL-18 or IL-1β for IFN-γ production from human T cells. Int Immunol. 2000;12:151-160.

35. Vilgelm AE, Richmond A. Chemokines modulate immune surveil- lance in tumorigenesis, metastasis, and response to immunother- apy. Front Immunol. 2019;10:333.

36. Boring L, Gosling J, Chensue SW, et al. Impaired monocyte migra- tion and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest. 1997;100:2552-2561.

37. Fox JC, Nakayama T, Tyler RC, Sander TL, Yoshie O, Volkman BF. Structural and agonist properties of XCL2, the other member of the C-chemokine subfamily. Cytokine. 2015;71:302-311.

38. Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol. 2018;15:299-311.

39. Dienz O, Eaton SM, Bond JP, et al. The induction of antibody pro- duction by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med. 2009;206:69-78.

40. Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol. 2012;34:133-149.

41. Haabeth OA, Lorvik KB, Hammarstrom C, et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun. 2011;2:240.

42. Perez-Figueroa E, Sanchez-Cuaxospa M, Martinez-Soto KA, et al. Strong inflammatory response and Th1-polarization profile in chil- dren with acute lymphoblastic leukemia without apparent infec- tion. Oncol Rep. 2016;35:2699-2706.

43. Vilchis-Ordonez A, Contreras-Quiroz A, Vadillo E, et al. Bone mar- row cells in acute lymphoblastic leukemia create a proinflammatory microenvironment influencing normal hematopoietic differentia- tion fates. Biomed Res Int. 2015;2015:386165.

44. Traxel S, Schadt L, Eyer T, et al. Bone marrow T helper cells with a Th1 phenotype induce activation and proliferation of leukemic cells in precursor B acute lymphoblastic leukemia patients. Oncogene. 2019;38:2420-2431.

45. Agyeman P, Kontny U, Nadal D, et al. A prospective multicenter study of microbiologically defined infections in pediatric cancer patients with fever and neutropenia: Swiss Pediatric Oncology Group 2003 fever and neutropenia study. Pediatr Infect Dis J. 2014;33:e219-225.

46. Khurana M, Lee B, Feusner JH. Fever at diagnosis of pediatric acute lymphoblastic leukemia: Are antibiotics really necessary? J Pediatr Hematol Oncol. 2015;37:498-501.

47. Smith KM, Pottage L, Thomas ER, et al. Th1 and Th2 CD4+ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J Immunol. 2000;165:3136-3144.

48. Bollard CM, Barrett AJ. Cytotoxic T lymphocytes for leukemia and lymphoma. Hematology. 2014;2014:565-569.

49. Homet Moreno B, Ribas A. Anti-programmed cell death pro- tein-1/ligand-1 therapy in different cancers. Br J Cancer. 2015;112:1421-1427.

50. Mittal D, Vijayan D, Smyth MJ. Overcoming Acquired PD-1/PD-L1 Resistance with CD38 Blockade. Cancer Discov. 2018;8:1066-1068.

51. Dufva O, Polonen P, Bruck O, et al. Immunogenomic Landscape of Hematological Malignancies. Cancer Cell. 2020;38(3):380-399.e13.

52. Kohnke T, Krupka C, Tischer J, Knosel T, Subklewe M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol. 2015;8:111.

53. Feucht J, Kayser S, Gorodezki D, et al. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispe- cific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget. 2016;7:76902-76919.

54. Wu CP, Qing X, Wu CY, Zhu H, Zhou HY. Immunophenotype and increased presence of CD4(+)CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett. 2012;3:421-424.

55. Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: a resource of annotated flow cytometry data- sets associated with peer-reviewed publications. Cytometry A. 2012;81:727-731.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る