リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enantioselective Construction of 5‐6‐5 Tricyclic Lactone Framework Bearing a Quaternary Bridgehead Carbon via Rh‐Catalyzed Asymmetric [2+2+2] Cycloaddition of Enediynes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enantioselective Construction of 5‐6‐5 Tricyclic Lactone Framework Bearing a Quaternary Bridgehead Carbon via Rh‐Catalyzed Asymmetric [2+2+2] Cycloaddition of Enediynes

Yasui, Takeshi Nakazato, Yuya Kurisaki, Koutarou Yamamoto, Yoshihiko 名古屋大学

2021.09.07

概要

Herein, we report a Rh-catalyzed asymmetric [2+2+2] cycloaddition of ene-yne-yne enediynes to generate enantio-enriched tricyclic cyclohexadienes bearing a quaternary bridgehead carbon. We found that the Rh-Phanephos complex is an appropriate catalyst for the cycloaddition of enediynes bearing an unsubstituted propiolate terminus, whereas Rh-biaryl bisphosphine catalysts, which have been widely used for asymmetric cycloadditions of alkynes and alkenes, are not applicable for the reaction of such enediynes. Several control experiments suggest that the reaction using the Rh-Phanephos complex exclusively proceeds via a rhodacyclopentadiene intermediate, unlike when using a Rh-biaryl bisphosphine complex that can form a rhodacyclopentadiene intermediate as well as a rhodacyclopentene intermediate in a substrate-dependent manner.

この論文で使われている画像

参考文献

[1] a) K. W. Quasdorf, L. E. Overman, Nature 2014, 516, 181–191; b) X.-P. Zeng, Z.-Y. Cao, Y.-H. Wang, F. Zhou, J. Zhou, Chem. Rev. 2016, 116, 7330–7396; c) P.- W. Xu, J.-S. Yu, C. Chen, Z.-Y. Cao, F. Zhou, J. Zhou, ACS Catal. 2019, 9, 1820–1882.

[2] a) Y. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 48, 740–751; b) R. Long, J. Huang, J. Gong, Z. Yang, Nat. Prod. Rep. 2015, 32, 1584–1601; c) M. Büschleb, S. Dorich, S. Hanessian, D. Tao, K. B. Schenthal, L. E. Overman, Angew. Chem. Int. Ed. 2016, 55, 4156–4186; d) C. Li, S. S. Ragab, G. Liu, W. Tang, Nat. Prod. Rep. 2020, 37, 276–292.

[3] a) N. P. Sahu, K. Koike, S. Banerjee, B. Achari, Z. Jia, T. Nikaido, Tetrahedron Lett. 1997, 38, 8405–8408; b) W. J. Robbins, F. Kavanagh, A. Herver, Proc. Natl. Acad. Sci. U. S. A. 1947, 33, 171–176; c) J. Grandjean, R. Huls, Tetrahedron Lett. 1974, 1893–1895; d) C. Lv, X. Yan, Q. Tu, Y. Di, C. Yuan, X. Fang, Y. Ben-David, L. Xia, J. Gong, Y. Shen, Z. Yang, X. Hao, Angew. Chem. Int. Ed. 2016, 55, 7539–7543; Angew. Chem. 2016, 128, 7665–7669.

[4] a) M. Kubo, C. Okada, J.-M. Huang, K. Harada, H. Hioki, Y. Fukuyama, Org. Lett. 2009, 11, 5190–5193; b) R. A. Shenvi, Nat. Prod. Rep. 2016, 33, 535–539; c) J. M. Witkin, R. A. Shenvi, X. Li, S. D. Gleason, J. Weiss, D. Morrow, J. T. Catow, M. Wakulchik, M. Ohtawa, H. H. Lu, M. D. Martinez, J. M. Schkeryantz, T. S. Carpenter, F. C. Lightstone, R. Cerne, Biochem. Pharmacol. 2018, 155, 61–70; d) M. Shoji, M. Ueda, M. Nishioka, H. Minato, M. Seki, K. Harada, M. Kubo, Y. Fukuyama, Y. Suzuki, E. Aoyama, M. Takigawa, T. Kuzuhara, Biochem. Biophy. Res. Commun. 2019, 519, 309–315; e) Y. Fukuyama, M. Kubo, K. Harada, J. Nat. Med. 2020, 74, 648–671.

[5] a) Y. S. Cho, D. A. Carcache, Y. Tian, Y.-M. Li, S. J. Danishefsky, J. Am. Chem. Soc. 2004, 126, 14358– 14359; b) D. A. Carcache, Y. S. Cho, Z. Hua, Y. Tian, Y.-M. Li, S. J. Danishefsky, J. Am. Chem. Soc. 2006, 128, 1016–1022; c) L. Trzoss, J. Xu, M. H. Lacoske, W. C. Mobley, E. A. Theodorakis, Chem. Eur. J. 2013, 19, 6398–6408.

[6] For recent reviews involving transition-metal-catalyzed [2+2+2] cycloaddition reactions, see: a) K. Tanaka, Synlett 2007, 1977–1993; b) T. Shibata, K. Tsuchikama, Org. Biomol. Chem. 2008, 6, 1317–1323; c) V. Michelet, P. Y. Toullec, J.-P. Genêt, Angew. Chem. Int. Ed. 2008, 47, 4268–4315; Angew. Chem. 2008, 120, 4338–4386; d) Y. Shibata, K. Tanaka, Synthesis 2012, 44, 323–350; e) K. Tanaka, Chem. Asian J. 2009, 4, 508–518; e) M. Amatore and C. Aubert, Eur. J. Org. Chem. 2015, 265– 286; f) G. Domínguez, J. Pérez-Castells, Chem. Eur. J. 2016, 22, 6720–6739; g) Y. Yamamoto, Tetrahedron Lett. 2017, 58, 3787–3794; h) A. Pla-Quintana, A. Roglans, Asian J. Org. Chem. 2018, 7, 1706–1718; i) A. Roglans, A. Pla-Quintana, M. Solà, Chem. Rev. 2021, 121, 1894–1979.

[7] M. Shibuya, T. Sudoh, T. Kawamura, Y. Yamamoto, Org. Biomol. Chem. 2015, 13, 5862–5866.

[8] T. Kawamura, H. Moriya, M. Shibuya, Y. Yamamoto, J. Org. Chem. 2019, 84, 12508–12519.

[9] a) K. Tanaka, G. Nishida, H. Sagae, M. Hirano, Synlett 2007, 1426–1430; b) T. Shibata, H. Kurokawa, K. Kanda, J. Org. Chem. 2007, 72, 6521–6525; c) T. León, M. Parera, A. Roglans, A. Riera, X. Verdaguer, Angew. Chem. Int. Ed. 2012, 51, 6951–6955; Angew. Chem. 2012, 124, 7057–7061.

[10] For selected examples of asymmetric [2+2+2] cycloadditions to construct a quaternary bridgehead stereocenter, see: a) T. Shibata, Y. Arai, Y. Tahara, Org. Lett. 2005, 7, 4955–4957; b) T. Shibata, Y. Tahara, J. Am. Chem. Soc. 2006, 128, 11766–11767; c) H. Sagae, K. Noguchi, M. Hirano, K. Tanaka, Chem. Commun. 2008, 3804–3806; d) K. Tanaka, Y. Otake, K. Noguchi, M. Hirano, Angew. Chem. Int. Ed. 2008, 47, 1312–1316; Angew. Chem. 2008, 120, 1332–1336; e) T. Suda, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed. 2011, 50, 4475–4479; Angew. Chem. 2011, 123, 4567–4571; f) A. T. Brusoe, E. J. Alexanian, Angew. Chem. Int. Ed. 2011, 50, 6596–6600; Angew. Chem. 2011, 123, 6726–6730; g) S. Suzuki, Y. Shibata, K. Tanaka, Chem. Eur. J. 2020, 26, 3698-3702.

[11] For selected examples of the synthesis of racemic tricyclic cyclohexadienes via transition-metal-catalyzed [2+2+2] cycloadditions, see: a) R. L. Halterman, K. P. C. Vollhardt, Organometallics 1988, 7, 883–892; b) Y. Yamamoto, S. Kuwabara, Y. Ando, H. Nagata, H. Nishiyama, K. Itoh, J. Org. Chem. 2004, 69, 6697–6705; c) A. Torrent, I. González, A. Pla-Quintana, A. Roglans, J. Org. Chem. 2005, 70, 2033–2041; d) S. Brun, L. Garcia, I. González, A. Torrent, A. Dachs, A. PlaQuintana, T. Parella, A. Roglans, Chem. Commun. 2008, 4339–4341; e) A. L. Jones, J. K. Snyder, J. Org. Chem. 2009, 74, 2907–2910; f) A. Geny, S. Gaudrel, F. Slowinski, M. Amatore, G. Chouraqui, M. Malacria, C. Aubert, V. Gandon, Adv. Synth. Catal. 2009, 351, 271– 275; g) A. L. Jones, J. K. Snyder, Org. Lett. 2010, 12, 1592–1595; h) A. Dachs, A. Pla-Quintana, T. Parella, M. Solà, A. Roglans, Chem. Eur. J. 2011, 17, 14493–14507; i) S. Ventre, C. Simon, F. Rekhroukh, M. Malacria, M. Amatore, C. Aubert, M. Petit, Chem. Eur. J. 2013, 19, 5830–5835.

[12] A mechanistic study for the RhCl(PPh3)3-catalyzed [2+2+2] cycloaddition of enediynes has been reported, see: A. Dachs, A. Roglans, M. Solà, Organometallics 2011, 30, 3151–3159.

[13] For selected examples involving the synthesis of chiral cyclohexadienes via the Rh-catalyzed enantioselective intermolecular [2+2+2] cycloadditions, see: a) P. A. Evans, K. W. Lai, J. R. Sawyer, J. Am. Chem. Soc. 2005, 127, 12466–12467; b) K. Tsuchikama, Y. Kuwata, T. Shibata, J. Am. Chem. Soc. 2006, 128, 13686–13687; c) P. A. Evans, J. R. Sawyer, P. A. Inglesby, Angew. Chem. Int. Ed. 2010, 49, 5746–5749; d) J. Hara, M. Ishida, M. Kobayashi, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed. 2014, 53, 2956–2959; Angew. Chem. 2014, 126, 3000–3003; e) Y. Aida, H. Sugiyama, H. Uekusa, Y. Shibata, K. Tanaka, Org. Lett. 2016, 18, 2672−2675; f) Y. Aida, Y. Shibata, K. Tanaka, J. Org. Chem. 2018, 83, 2617−2626; g) Q. Teng, W. Mao, D. Chen, Z. Wang, C.- H. Tung, Z. Xu, Angew. Chem. Int. Ed. 2020, 59, 2220– 2224; Angew. Chem. 2020, 132, 2240–2244.

[14] a) Y. Kishimoto, P. Eckerle, T. Miyake, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1994, 116, 12131–12132; b) K. Maeda, H. Goto, E. Yashima, Macromolecules 2001, 34, 1160–1164.

[15] a) P. J. Pye, K. Rossen, R. A. Reamer, N. N. Tsou, R. P. Volante, P. J. Reider, J. Am. Chem. Soc. 1997, 119, 6207−6208; b) H.-Y. Jang, F. W. Hughes, H. Gong, J. Zhang, J. S. Brodbelt, M. J. Krische, J. Am. Chem. Soc. 2005, 127, 6174−6175; c) L. A. Schwartz, M. Holmes, G. A. Brito, T. P. Gonçalves, J. Richardson, J. C. Ruble, K.-W. Huang, M. J. Krische, J. Am. Chem. Soc. 2019, 141, 2087−2096.

[16] CCDC-2063018 ((S)-4g) and 2063019 (7) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[17] a) T. Yasui, T. Kikuchi, Y. Yamamoto, Chem. Commun. 2020, 56, 12865–12868; b) J. Nogami, Y. Tanaka, H. Sugiyama, H. Uekusa, A. Muranaka, M. Uchiyama, K. Tanaka, J. Am. Chem. Soc. 2020, 142, 9834−9842.

[18] a) L. Falivene, R. Credendino, A. Poater, A. Petta, L. Serra, R. Oliva, V. Scarano, L Cavallo, Organometallics 2016, 35, 2286–2293; b) L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano, L. Cavallo, Nat. Chem. 2019, 11, 872–879.

参考文献をもっと見る