リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Surface residual stress and phase stability in unstable β-type Ti–15Mo–5Zr–3Al alloy manufactured by laser and electron beam powder bed fusion technologies」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Surface residual stress and phase stability in unstable β-type Ti–15Mo–5Zr–3Al alloy manufactured by laser and electron beam powder bed fusion technologies

Takase, Aya 大阪大学

2021.11.01

概要

The differences between the physicochemical properties of the laser and electron beam powder bed fusion (L- and EB-PBF) methods are yet to be explored further. In particular, the differences in the residual stress and phase stability of alloys with unstable phases remain unexplored. The present work is the first to systematically investigate how the heat source type and process parameters affect the surface residual stress and phase stability of an unstable β-type titanium alloy, Ti–15Mo–5Zr–3Al. The surface residual stress and β-phase behavior were studied using high-precision X-ray diffraction (HP-XRD). Significant differences were observed between the two methods. The L-PBF-made specimens exhibited tensile residual stresses of up to 400 MPa in the surface area. HP-XRD analysis revealed a stress-induced lattice distortion, interpreted as a transitional state between the β-phase and α”-phase. In contrast, the EB-PBF-made specimens showed no significant residual stress and had an undistorted β-phase coexisting with the hexagonal α-phase caused by elemental partitioning. This study provides new insights into the previously neglected effects of L-PBF and EB-PBF in unstable β-type titanium alloys.

参考文献

[1] A. Sidambe, Biocompatibility of advanced manufactured titanium implants—a review, Materials 7 (2014) 8168–8188, https://doi.org/10.3390/ma7128168.

[2] L.-C. Zhang, H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review, Adv. Eng. Mater. 18 (2016) 463–475, https://doi.org/10.1002/adem.201500419.

[3] P. Li, D.H. Warner, A. Fatemi, N. Phan, Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research, Int. J. Fatigue 85 (2016) 130–143, https://doi.org/10.1016/j. ijfatigue.2015.12.003.

[4] M. Schmidt, M. Merklein, D. Bourell, D. Dimitrov, T. Hausotte, K. Wegener, L. Overmeyer, F. Vollertsen, G.N. Levy, Laser based additive manufacturing in industry and academia, CIRP Ann. 66 (2017) 561–583, https://doi.org/10.1016/j. cirp.2017.05.011.

[5] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A. M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224, https://doi.org/10.1016/j.pmatsci.2017.10.001.

[6] J. Zhang, X. Wang, S. Paddea, X. Zhang, Fatigue crack propagation behaviour in wire arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress, Mater. Des. 90 (2016) 551–561, https://doi.org/10.1016/j. matdes.2015.10.141.

[7] J.-P. Kruth, J. Deckers, E. Yasa, R. Wauthl´e, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method, Proc. Inst. Mech. Eng. Part B J. Eng. Manufact. 226 (2012) 980–991, https://doi. org/10.1177/0954405412437085.

[8] J. Robinson, I. Ashton, P. Fox, E. Jones, C. Sutcliffe, Determination of the effect of scan strategy on residual stress in laser powder bed fusion additive manufacturing, Addit. Manufact. 23 (2018) 13–24, https://doi.org/10.1016/j. addma.2018.07.001.

[9] E.R. Denlinger, J.C. Heigel, P. Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, J. Mater. Proc. Technol. 215 (2015) 123–131, https://doi.org/ 10.1016/j.jmatprotec.2014.07.030.

[10] J. Cao, M.A. Gharghouri, P. Nash, Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti–6Al–4V build plates, J. Mater. Proc. Technol. 237 (2016) 409–419, https://doi.org/10.1016/j.jmatprotec.2016.06.032.

[11] C. Li, Z.Y. Liu, X.Y. Fang, Y.B. Guo, Residual stress in metal additive manufacturing, Procedia CIRP 71 (2018) 348–353, https://doi.org/10.1016/j. procir.2018.05.039.

[12] F. Martina, M.J. Roy, B.A. Szost, S. Terzi, P.A. Colegrove, S.W. Williams, P. J. Withers, J. Meyer, M. Hofmann, Residual stress of as-deposited and rolled wire arc additive manufacturing Ti–6Al–4V components, Mater. Sci. Technol. 32 (2016) 1439–1448, https://doi.org/10.1080/02670836.2016.1142704.

[13] P. Edwards, M. Ramulu, Fatigue performance evaluation of selective laser melted Ti–6Al–4V, Mater. Sci. Eng. A 598 (2014) 327–337, https://doi.org/10.1016/j. msea.2014.01.041.

[14] J.L. Bartlett, X. Li, An overview of residual stresses in metal powder bed fusion, Addit. Manufact. 27 (2019) 131–149, https://doi.org/10.1016/j. addma.2019.02.020.

[15] D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice, P. Bowen, The effect of machined topography and integrity on fatigue life, Int. J. Mach. Tools Manufact. 44 (2004) 125–134, https://doi.org/10.1016/j.ijmachtools.2003.10.018.

[16] J. Günther, D. Krewerth, T. Lippmann, S. Leuders, T. Tro¨ster, A. Weidner, H. Biermann, T. Niendorf, Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime, Int. J. Fatigue 94 (2017) 236–245, https://doi.org/10.1016/j.ijfatigue.2016.05.018.

[17] S. Leuders, M. Tho¨ne, A. Riemer, T. Niendorf, T. Tro¨ster, H.A. Richard, H.J. Maier, On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance, Int. J. Fatigue 48 (2013) 300–307, https://doi.org/10.1016/j.ijfatigue.2012.11.011.

[18] H. Ali, L. Ma, H. Ghadbeigi, K. Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A 695 (2017) 211–220, https://doi.org/10.1016/j.msea.2017.04.033.

[19] K. Moussaoui, M. Mousseigne, J. Senatore, R. Chieragatti, The effect of roughness and residual stresses on fatigue life time of an alloy of titanium, Int. J. Adv. Manufact. Technol. 78 (2015) 557–563, https://doi.org/10.1007/s00170-014-6596-7.

[20] Y. Liu, S. Li, W. Hou, S. Wang, Y. Hao, R. Yang, T.B. Sercombe, L.-C. Zhang, Electron beam melted beta-type Ti–24Nb–4Zr–8Sn porous structures with high strength-to-modulus ratio, J. Mater. Sci. Technol. 32 (2016) 505–508, https://doi.org/10.1016/j.jmst.2016.03.020.

[21] Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L. C. Zhang, Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting, Acta Mater. 113 (2016) 56–67, https://doi.org/10.1016/j. actamat.2016.04.029.

[22] S.-H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima, T. Nakano, Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti–15Mo–5Zr–3Al alloy single crystal, J. Mech. Behav. Biomed. Mater. 14 (2012) 48–54, https://doi.org/10.1016/j.jmbbm.2012.05.005.

[23] M. Tane, K. Hagihara, M. Ueda, T. Nakano, Y. Okuda, Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-based alloys with low body-centered cubic phase stability, Acta Mater. 102 (2016) 373–384, https://doi.org/10.1016/j.actamat.2015.09.030.

[24] E.S. Fischer, D. Dever, Relation of the of the c′ elastic modulus to stability of b.c.c transition metals, Acta Met. 18 (1970) 265–269, https://doi.org/10.1016/0001-6160(70)90033-7.

[25] H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, B. Stucker, Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting, Mater. Des. 86 (2015) 545–554, https://doi.org/10.1016/j.matdes.2015.07.147.

[26] N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Methods of measuring residual stresses in components, Mater. Des. 35 (2012) 572–588, https://doi.org/ 10.1016/j.matdes.2011.08.022.

[27] T. Rickert, Residual stress measurement by ESPI hole-drilling, Procedia CIRP 45 (2016) 203–206, https://doi.org/10.1016/j.procir.2016.02.256.

[28] SAE_HS-784 Residual Stress Measurement by X-Ray Diffraction_2003 Edition, (2003).

[29] A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel, Metal. Mater. Trans. A. 45 (2014) 6260–6270, https://doi.org/ 10.1007/s11661-014-2549-x.

[30] T. Watkins, Neutron characterization for additive manufacturing, Adv. Mater. Process. (2013) 23–27.

[31] D.W. Brown, J.D. Bernardin, J.S. Carpenter, B. Clausen, D. Spernjak, J. M. Thompson, Neutron diffraction measurements of residual stress in additively manufactured stainless steel, Mater. Sci. Eng. A 678 (2016) 291–298, https://doi.org/10.1016/j.msea.2016.09.086.

[32] Measurement of residual stress in materials using neutrons, Proceedings of a technical meeting, 2003, International Atomic Energy Agency, Vienna, 2005. http://www-pub.iaea.org/MTCD/publications/PDF/te_1457_web.pdf Accessed 20 August 2021., (n.d.).

[33] C. Xu, W. Song, Q. Pan, H. Li, S. Liu, Nondestructive testing residual stress using ultrasonic critical refracted longitudinal wave, Phys. Proc. 70 (2015) 594–598, https://doi.org/10.1016/j.phpro.2015.08.030.

[34] L.M. Sochalski-Kolbus, E.A. Payzant, P.A. Cornwell, T.R. Watkins, S.S. Babu, R. R. Dehoff, M. Lorenz, O. Ovchinnikova, C. Duty, Comparison of residual stresses in inconel 718 simple parts made by electron beam melting and direct laser metal sintering, Metal. Mater. Trans. A 46 (2015) 1419–1432, https://doi.org/10.1007/ s11661-014-2722-2.

[35] Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma, A.M. Beese, Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions, Mater. Des. 113 (2017) 169–177, https://doi.org/10.1016/j. matdes.2016.10.003.

[36] R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Atomic-resolution imaging with a sub-50-pm electron probe, Phys. Rev. Lett. 102 (2009), 096101, https://doi.org/ 10.1103/PhysRevLett.102.096101.

[37] T. Mitsunaga, M. Saigo, G. Fujinawa, High-precision parallel-beam X-ray system for high-temperature diffraction studies, Powder Diffr. 17 (2002) 173–177.

[38] A. Takase, Effect of systematic errors on lattice parameter refinement, 60th Annual Conference on Applications of X-Ray Analysis. (2011) D-81.

[39] T. Takashima, Y. Koizumi, Y. Li, K. Yamanaka, T. Saito, A. Chiba, Effect of building position on phase distribution in Co–Cr–Mo alloy additive manufactured by electron-beam melting, Mater. Trans. 57 (2016) 2041–2047, https://doi.org/ 10.2320/matertrans.Y-M2016826.

[40] T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano, Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 132 (2017) 34–38, https://doi.org/10.1016/j.scriptamat.2016.12.038.

[41] S.-H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting, Scr. Mater. 159 (2019) 89–93, https://doi.org/10.1016/j.scriptamat.2018.09.017.

[42] Standard Test Method for Verifying the Alignment of X-Ray Diffraction Instrumentation for Residual Stress Measurement - Designation: E 915 – 96 (Reapproved 2002), ASTM International. (2002).

[43] G.S. Pawley, Unit-cell refinement from powder diffraction scans, J. Appl. Crystallogr. 14 (1981) 357–361, https://doi.org/10.1107/S0021889881009618.

[44] Q. Chen, X. Liang, D. Hayduke, J. Liu, L. Cheng, J. Oskin, R. Whitmore, A.C. To, An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering, Addit. Manuf. 28 (2019) 406–418, https://doi.org/10.1016/j.addma.2019.05.021.

[45] D.L. Bish, S.A. Howard, Quantitative phase analysis using the Rietveld method, J. Appl. Crystallogr. 21 (1988) 86–91, https://doi.org/10.1107/ S0021889887009415.

[46] John A. Small, Robert L. Watters, Jr., Certificate SRM 660c - Line Position and Line Shape Standard for Powder Diffraction (Lanthanum Hexaboride Powder), (2015). https://www-s.nist.gov/srmors/view_cert.cfm?srm 660C . Accessed 20 August 2021., (n.d.).

[47] J.I. Langford, Some applications of pattern fitting to powder diffraction data, Prog. Cryst. Growth Charact. 14 (1987) 185–211, https://doi.org/10.1016/0146-3535 (87)90018-9.

[48] H.J. Willy, X. Li, Z. Chen, T.S. Herng, S. Chang, C.Y.A. Ong, C. Li, J. Ding, Model of laser energy absorption adjusted to optical measurements with effective use in finite element simulation of selective laser melting, Mater. Des. 157 (2018) 24–34, https://doi.org/10.1016/j.matdes.2018.07.029.

[49] G.L. Knapp, N. Raghavan, A. Plotkowski, T. DebRoy, Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing, Addit. Manufact. 25 (2019) 511–521, https://doi. org/10.1016/j.addma.2018.12.001.

[50] S. Liu, H. Zhu, G. Peng, J. Yin, X. Zeng, Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis, Mater. Des. 142 (2018) 319–328, https://doi.org/10.1016/j.matdes.2018.01.022.

[51] Q. Chen, X. Liang, D. Hayduke, J. Liu, L. Cheng, J. Oskin, R. Whitmore, A.C. To, An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering, Addit. Manufact. 28 (2019) 406–418, https://doi.org/10.1016/j.addma.2019.05.021.

[52] EOS M 290 – industrial 3D printed parts from metal materials. https://www.eos.in fo/en/additive-manufacturing/3d-printing-metal/eos-metal-systems/eos-m-290 . Accessed 20 August 2021., (n.d.).

[53] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. Golabi, Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater. Des. 89 (2016) 255–263, https://doi.org/10.1016/j. matdes.2015.10.002.

[54] M.-S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay, A. Piglione, The role of side- branching in microstructure development in laser powder-bed fusion, Nat. Commun. 11 (2020) 749, https://doi.org/10.1038/s41467-020-14453-3.

[55] H.S. Carslaw, J.C. Jaeger. Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford, 1986.

[56] Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des. 63 (2014) 856–867, https://doi.org/10.1016/j.matdes.2014.07.006.

[57] S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, J. Cao, A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti–6Al–4V, Acta Mater. 132 (2017) 106–117, https://doi.org/10.1016/j. actamat.2017.04.027.

[58] V. Pashkis, V. Pashkis: Trans. AFS, 53 (1945), 90., Trans. AFS. 53 (1945) 90.

[59] https://www.azom.com/article.aspx?ArticleID 9427 Accessed 20 August 2021., (n.d.).

[60] M. Dallago, V. Fontanari, E. Torresani, M. Leoni, C. Pederzolli, C. Potrich, M. Benedetti, Fatigue and biological properties of Ti–6Al–4V ELI cellular structures with variously arranged cubic cells made by selective laser melting, J. Mech. Behav. Biomed. Mater. 78 (2018) 381–394, https://doi.org/10.1016/j. jmbbm.2017.11.044.

[61] M.A. Surmeneva, R.A. Surmenev, E.A. Chudinova, A. Koptioug, M.S. Tkachev, S. N. Gorodzha, L.-E. R¨annar, Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction, Mater. Des. 133 (2017) 195–204, https://doi.org/10.1016/j.matdes.2017.07.059.

[62] H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Effects of heat treatments on microstructure and properties of Ti–6Al–4V ELI alloy fabricated by electron beam melting (EBM), Mater. Sci. Eng. A. 685 (2017) 417–428, https://doi.org/10.1016/j.msea.2017.01.019.

[63] B.D. Cullity. Elements of x-Ray Diffraction, 2d ed., Addison-Wesley Pub. Co, Reading, Mass, 1978.

[64] A. Takase, T. Ishimoto, R. Suganuma, T. Nakano, Lattice distortion in selective laser melting (SLM)-manufactured unstable β-type Ti–15Mo–5Zr–3Al alloy analyzed by high-precision X-ray diffractometry, Scr. Mater. 201 (2021), 113953, https://doi.org/10.1016/j.scriptamat.2021.113953.

[65] P.J. Potts, A Handbook of Silicate Rock Analysis, (1987) p. 336. https://doi.org/ 10.1007/978–94-015–3988-3.

[66] A. Brostrøm, K. Kling, K. Hougaard, K. Mølhave, Analysis of electron transparent beam-sensitive samples using scanning electron microscopy coupled with energy- dispersive X-ray spectroscopy, Microsc. Microanal. 26 (2020) 373–386, https://doi.org/10.1017/S1431927620001464.

[67] H.E. Ho¨fer, G.P. Brey, The iron oxidation state of garnet by electron microprobe: its determination with the flank method combined with major-element analysis, Am. Min. 92 (2007) 873–885, https://doi.org/10.2138/am.2007.2390.

[68] T. Mishurova, K. Artzt, J. Haubrich, G. Requena, G. Bruno, Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti–6Al–4V, Metals 9 (2019) 261, https://doi.org/10.3390/ met9020261.

[69] C.H. Fu, Y.B. Guo, Three-dimensional temperature gradient mechanism in selective laser melting of Ti–6Al–4V, J. Manuf. Sci. Eng. 136 (2014), 061004, https://doi. org/10.1115/1.4028539.

[70] J. Reijonen, A. Revuelta, T. Riipinen, K. Ruusuvuori, P. Puukko, On the effect of shielding gas flow on porosity and melt pool geometry in laser powder bed fusion additive manufacturing, Addit. Manuf. 32 (2020), 101030, https://doi.org/10.1016/j.addma.2019.101030.

[71] L. Mugwagwa, D. Dimitrov, S. Matope, I. Yadroitsev, Influence of process parameters on residual stress related distortions in selective laser melting, Procedia Manuf. 21 (2018) 92–99, https://doi.org/10.1016/j.promfg.2018.02.099.

[72] T. Mukherjee, V. Manvatkar, A. De, T. DebRoy, Mitigation of thermal distortion during additive manufacturing, Scr. Mater. 127 (2017) 79–83, https://doi.org/ 10.1016/j.scriptamat.2016.09.001.

[73] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution, J. Alloy. Compd. 583 (2014) 404–409, https://doi.org/10.1016/j. jallcom.2013.08.183.

[74] L.A. Bendersky, A. Roytburd, W.J. Boettinger, Phase transformations in the (Ti, Al) 3 Nb section of the Ti–Al–Nb system—I. Microstructural predictions based on a subgroup relation between phases, Acta Metall. Mater. 42 (1994) 2323–2335, https://doi.org/10.1016/0956-7151(94)90311-5.

[75] T. Inamura, H. Hosoda, K. Wakashima, S. Miyazaki, Anisotropy and temperature dependence of Young’s modulus in textured tinbal biomedical shape memory alloy, Mater. Trans. 46 (2005) 1597–1603, https://doi.org/10.2320/ matertrans.46.1597.

[76] L.L. Chang, Y.D. Wang, Y. Ren, In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young’s modulus, Mater. Sci. Eng. A 651 (2016) 442–448, https://doi.org/10.1016/j.msea.2015.11.005.

[77] L.-F. Huang, B. Grabowski, J. Zhang, M.-J. Lai, C.C. Tasan, S. Sandlo¨bes, D. Raabe, J. Neugebauer, From electronic structure to phase diagrams: a bottom-up approach to understand the stability of titanium–transition metal alloys, Acta Mater. 113 (2016) 311–319, https://doi.org/10.1016/j.actamat.2016.04.059.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る