リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of a helium gas atmosphere on the mechanical properties of Ti-6Al-4V alloy built with laser powder bed fusion: A comparative study with argon gas」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of a helium gas atmosphere on the mechanical properties of Ti-6Al-4V alloy built with laser powder bed fusion: A comparative study with argon gas

Amano, Hiroki 大阪大学

2021.12.01

概要

In metal additive manufacturing, the microstructures and associated mechanical properties of metal specimens can be controlled over a wide range. Although process parameters are considered important in the fabrication of functional parts, the effect of atmospheric gas has not been comprehensively documented. In laser powder bed fusion (LPBF), gas flow is used to eliminate fumes generated by laser irradiation. Simultaneously, the gas removes heat from the laser-irradiated part, which is exposed to high temperature. In this study, we investigated the capacity of helium as an alternative to argon, which is conventionally used as the LPBF atmosphere gas. He has a higher thermal conductivity and lower gas density than Ar, which may result in enhanced heat removal from the Ti-6Al-4V alloy during fabrication. Numerical simulations suggest a greater cooling rate under He flow. Further, the material built under He flow contained finer α' martensite grains and showed improved mechanical properties compared to those fabricated under Ar flow, despite the identical laser irradiation conditions. Thus, He gas is advantageous in LPBF for fabricating products with superior mechanical performance through microstructural refinement, and this is a result of its capacity for cooling and fume generation inhibition. Therefore, this study reveals the importance of the choice of atmospheric gas because of its effects on the characteristics of metallic specimens fabricated using LPBF.

参考文献

[1] N. Aage, E. Andreassen, B.S. Lazarov, O. Sigmund, Giga-voxel computational morphogenesis for structural design, Nature 550 (2017) 84–86, https://doi.org/ 10.1038/nature23911.

[2] J.-H. Zhu, W.-H. Zhang, L. Xia, Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng. 23 (2016) 595–622, https://doi. org/10.1007/s11831-015-9151-2.

[3] S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Mater. Des. 164 (2019), 107552, https://doi.org/10.1016/j.matdes.2018.107552.

[4] P. Wang, J. Song, M.L.S. Nai, J. Wei, Experimental analysis of additively manufactured component and design guidelines for lightweight structures: A case study using electron beam melting, Addit. Manuf. 33 (2020), 101088, https://doi.org/10.1016/j.addma.2020.101088.

[5] H. Gong, K. Rafi, H. Gu, G.D.J. Ram, T. Starr, B. Stucker, Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting, Mater. Des. 86 (2015) 545–554, https://doi.org/10.1016/j.matdes.2015.07.147.

[6] L. Xiao, W. Song, M. Hu, P. Li, Compressive properties and micro-structural characteristics of Ti–6Al–4V fabricated by electron beam melting and selective laser melting, Mater. Sci. Eng. A 764 (2019), 138204, https://doi.org/10.1016/j. msea.2019.138204.

[7] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Mater. 117 (2016) 371–392, https://doi.org/10.1016/j.actamat.2016.07.019.

[8] S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Mater. Sci. Eng. A 513–514 (2009) 311–318, https://doi.org/10.1016/j.msea.2009.02.019.

[9] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion, Engineering 3 (2017) 685–694, https://doi.org/10.1016/J. ENG.2017.05.023.

[10] O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima, T. Nakano, Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy, Acta Mater. 212 (2021), 116876, https://doi.org/10.1016/j.actamat.2021.116876.

[11] P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, A.J. Moore, Laser powder bed fusion in high-pressure atmospheres, Int. J. Adv. Manuf. Technol. 99 (2018) 543–555, https://doi.org/10.1007/s00170-018-2495-7.

[12] C. Pauzon, P. Forˆet, E. Hryha, T. Arunprasad, L. Nyborg, Argon–helium mixtures as laser-powder bed fusion atmospheres: Towards increased build rate of Ti-6Al-4V, J. Mater. Proc. Technol. 279 (2020), 116555, https://doi.org/10.1016/j.jmatprotec.2019.116555.

[13] M. EOS M 290 – Industrial 3D Printed Parts from Metal Materials. 〈https://www.eos.info/en/additive-manufacturing/3d-printing-metal/eos-metal-systems/eos-m- 290〉. Accessed 21 September 2021.

[14] G.L. Knapp, N. Raghavan, A. Plotkowski, T. DebRoy, Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing, Addit. Manuf. 25 (2019) 511–521, https://doi.org/10.1016/j.addma.2018.12.001.

[15] H.J. Willy, X. Li, Z. Chen, T.S. Herng, S. Chang, C.Y.A. Ong, C. Li, J. Ding, Model of laser energy absorption adjusted to optical measurements with effective use in finite element simulation of selective laser melting, Mater. Des. 157 (2018) 24–34, https://doi.org/10.1016/j.matdes.2018.07.029.

[16] S. Liu, H. Zhu, G. Peng, J. Yin, X. Zeng, Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis, Mater. Des. 142 (2018) 319–328, https://doi.org/10.1016/j.matdes.2018.01.022.

[17] A. Takase, T. Ishimoto, R. Suganuma, T. Nakano, Lattice distortion in selective laser melting (SLM)-manufactured unstable β-type Ti-15Mo-5Zr-3Al alloy analyzed by high-precision X-ray diffractometry, Scr. Mater. 201 (2021), 113953, https://doi.org/10.1016/j.scriptamat.2021.113953.

[18] Q. Chen, X. Liang, D. Hayduke, J. Liu, L. Cheng, J. Oskin, R. Whitmore, A.C. To, An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering, Addit. Manuf. 28 (2019) 406–418, https://doi.org/10.1016/j.addma.2019.05.021.

[19] T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano, Crystallographic texture control of beta-type Ti-15Mo-5Zr-3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 132 (2017) 34–38, https://doi.org/10.1016/j.scriptamat.2016.12.038.

[20] H.S. Carslaw, J.C. Jaeger. Conduction of Heat in Solids, second edition.,, Oxford University Press,, Oxford, 1986.

[21] Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des. 63 (2014) 856–867, https://doi.org/10.1016/j.matdes.2014.07.006.

[22] S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner, J. Cao, A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti- 6Al-4V, Acta Mater. 132 (2017) 106–117, https://doi.org/10.1016/j. actamat.2017.04.027.

[23] V. Pashkis, A.F.S. Trans 53 (1945) 90.

[24] A. Takase, T. Ishimoto, R. Suganuma, T. Nakano, Surface residual stress and phase stability in unstable β-type Ti-15Mo-5Zr-3Al alloy manufactured by laser and electron beam powder bed fusion technologies, Addit. Manuf. 47 (2021), 102257, https://doi.org/10.1016/j.addma.2021.102257.

[25] R. Rai, P. Burgardt, J.O. Milewski, T.J. Lienert, T. DebRoy, Heat transfer and fluid flow during electron beam welding of 21Cr-6Ni-9Mn steel and Ti-6Al-4V alloy, J. Phys. D: Appl. Phys. 42 (2009), 025503, https://doi.org/10.1088/0022-3727/ 42/2/025503.

[26] VDI-Gesellschaft Energietechnik, (Engineering Reference Book on Energy and Heat), Springer-Verlag, Berlin Heidelberg,, Heidelberg, 1992.

[27] D.J. Acheson, Elementary Fluid Dynamics, Oxford University Press,, New York, 2005.

[28] D. Agius, K.I. Kourousis, C. Wallbrink, T. Song, Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: The effect of build orientation, Mater. Sci. Eng. A 701 (2017) 85–100, https://doi.org/10.1016/j.msea.2017.06.069.

[29] T. Ahmed, H.J. Rack, Phase transformations during cooling in α+β titanium alloys, Mater. Sci. Eng. A 243 (1998) 206–211, https://doi.org/10.1016/S0921-5093(97)00802-2.

[30] Q. Chao, P.D. Hodgson, H. Beladi, Thermal stability of an ultrafine grained Ti-6Al- 4V alloy during post-deformation annealing, Mater. Sci. Eng. A 694 (2017) 13–23, https://doi.org/10.1016/j.msea.2017.03.082.

[31] S. Mishra, T. DebRoy, Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti–6Al–4V welds, Acta Mater. 52 (2004) 1183–1192, https://doi.org/10.1016/j.actamat.2003.11.003.

[32] R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook. Titanium Alloys, ASM International,, Flevoland, 1994.

[33] J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater. Des. 108 (2016) 308–318, https://doi.org/10.1016/j.matdes.2016.06.117.

[34] Y. Chong, T. Bhattacharjee, J. Yi, A. Shibata, N. Tsuji, Mechanical properties of fully martensite microstructure in Ti-6Al-4V alloy transformed from refined beta grains obtained by rapid heat treatment (RHT), Scr. Mater. 138 (2017) 66–70, https://doi.org/10.1016/j.scriptamat.2017.05.038.

[35] T. Ishimoto, K. Hagihara, K. Hisamoto, T. Nakano, Stability of crystallographic texture in laser powder bed fusion: Understanding the competition of crystal growth using a single crystalline seed, Addit. Manuf. 43 (2021), 102004, https://doi.org/10.1016/j.addma.2021.102004.

[36] M. Simonelli, Y.Y. Tse, C. Tuck, On the texture formation of selective laser melted Ti-6Al-4V, Metall. Mater. Trans. A 45 (2014) 2863–2872, https://doi.org/ 10.1007/s11661-014-2218-0.

[37] P. Wen, L. Jauer, M. Voshage, Y. Chen, R. Poprawe, J.H. Schleifenbaum, Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants, J. Mater. Proc. Technol. 258 (2018) 128–137, https://doi.org/10.1016/j.jmatprotec.2018.03.007.

[38] P. Wen, Y. Qin, Y. Chen, M. Voshage, L. Jauer, R. Poprawe, J.H. Schleifenbaum, Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification, J. Mater. Sci. Technol. 35 (2019) 368–376, https://doi.org/10.1016/j.jmst.2018.09.065.

[39] D. Wang, S. Wu, F. Fu, S. Mai, Y. Yang, Y. Liu, C. Song, Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties, Mater. Des. 117 (2017) 121–130, https://doi.org/10.1016/j. matdes.2016.12.060.

[40] H. Amano, Y. Yamaguchi, T. Ishimoto, T. Nakano, Reduction of spatter generation using atmospheric gas in laser powder bed fusion of Ti-6Al-4V, Mater. Trans. 62 (2021) 1225–1230, https://doi.org/10.2320/matertrans.MT-M2021059.

[41] T.F. Broderick, A.G. Jackson, H. Jones, F.H. Froes, The effect of cooling conditions on the microstructure of rapidly solidified Ti-6Al-4V, Metall. Trans. A 16 (1985) 1951–1959, https://doi.org/10.1007/BF02662396.

[42] W. Zhang, Y.M. Jin, A.G. Khachaturyan, Phase field microelasticity modeling of heterogeneous nucleation and growth in martensitic alloys, Acta Mater. 55 (2007) 565–574, https://doi.org/10.1016/j.actamat.2006.08.050.

[43] Y. Liao, C. Ye, B.-J. Kim, S. Suslov, E.A. Stach, G.J. Cheng, Nucleation of highly dense nanoscale precipitates based on warm laser shock peening, J. Appl. Phys. 108 (2010), 063518, https://doi.org/10.1063/1.3481858.

[44] S.-H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting, Scr. Mater. 159 (2019) 89–93, https://doi.org/10.1016/j.scriptamat.2018.09.017.

[45] M. Laleh, A.E. Hughes, W. Xu, N. Haghdadi, K. Wang, P. Cizek, I. Gibson, M.Y. Tan, On the unusual intergranular corrosion resistance of 316L stainless steel additively manufactured by selective laser melting, Corros. Sci. 161 (2019), 108189, https:// doi.org/10.1016/j.corsci.2019.108189.

[46] T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, M. Todai, H.S. Kim, T. Nakano, Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility, Scr. Mater. 194 (2021), 113658, https://doi.org/10.1016/j. scriptamat.2020.113658.

[47] S. Zhonggang, J. Shuwei, G. Yanhua, L. Yichen, C. Lili, X. Fei, Microstructure evolution and mechanical properties of Hastelloy X alloy produced by Selective Laser Melting, High. Temp. Mater. Proc. 39 (2020) 124–135, https://doi.org/ 10.1515/htmp-2020-0032.

[48] C. Tan, K. Zhou, W. Ma, B. Attard, P. Zhang, T. Kuang, Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties, Sci. Technol. Adv. Mater. 19 (2018) 370–380, https://doi.org/10.1080/14686996.2018.1455154.

[49] A. Das, J.A. Mun˜iz-Lerma, E.R.L. Espiritu, A. Nommeots-Nomm, K. Waters, M. Brochu, Contribution of cellulosic fibre filter on atmosphere moisture content in laser powder bed fusion additive manufacturing, Sci. Rep. 9 (2019) 13794, https://doi.org/10.1038/s41598-019-50238-5.

[50] C.A. Scholes, U.K. Ghosh, Review of membranes for helium separation and purification, Membranes 7 (2017) 9, https://doi.org/10.3390/ membranes7010009.

[51] T.E. Rufford, K.I. Chan, S.H. Huang, E.F. May, A review of conventional and emerging process technologies for the recovery of helium from natural gas, Adsorp. Sci. Technol. 32 (2014) 49–72, https://doi.org/10.1260/0263-6174.32.1.49.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る