リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Low-Yield Stress Co–Cr–W–Ni Alloy by Adding 6 Mass Pct Mn for Balloon-Expandable Stents

Yanagihara, Soh 大阪大学

2021.07.07

概要

This is the first report presenting the development of a Co–Cr–W–Ni–Mn alloy by adding 6 mass pct Mn to ASTM F90 Co–20Cr–15W–10Ni (CCWN, mass pct) alloy for use as balloon-expandable stents with an excellent balance of mechanical properties and corrosion resistance. The effects of Mn addition on the microstructures as well as the mechanical and corrosion properties were investigated after hot forging, solution treatment, swaging, and static recrystallization. The Mn-added alloy with a grain size of ~ 20 lm (recrystallization condition: 1523 K, 150 seconds) exhibited an ultimate tensile strength of 1131 MPa, 0.2 pct proof stress of 535 MPa, and plastic elongation of 66 pct. Additionally, it exhibited higher ductility and lower yield stress while maintaining high strength compared to the ASTM F90 CCWN alloy. The formation of intersecting stacking faults was suppressed by increasing the stacking fault energy (SFE) with Mn addition, resulting in a lower yield stress. The low-yield stress is effective in suppressing stent recoil. In addition, strain-induced martensitic transformation during plastic deformation was suppressed by increasing the SFE, thereby improving the ductility. The Mn-added alloys also exhibited good corrosion resistance, similar to the ASTM F90 CCWN alloy. Mn-added Co–Cr–W–Ni alloys are suitable for use as balloon-expandable stents.

この論文で使われている画像

参考文献

1. P. Poncin and J. Proft: Proc. Mater. Processes Med. Devices Conf., 2003, pp. 253–59.

2. J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, and E. Maire:Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2819–30.

3. F.R. Morral: J. Mater., 1966, vol. 1, pp. 384–412.

4. R.V. Marrey, R. Butgermeister, R.B. Grishaber, and R.O. Ritchie:Biomaterials, 2006, vol. 27, pp. 1988–2000.

5. P. Poncin, C. Millet, J. Chevy, and J.L. Proft: Proc. Mater. Pro- cesses Med. Devices Conf., 2004, pp. 279–83.

6. A. Khalilimeybodi, A.A. Khoei, and B. Sharif-Kashani: Cardio- vasc. Eng. Technol., 2019, vol. 11, pp. 188–204.

7. J. Favre, D. Fabre` gue, E. Maire, and A. Chiba: Philos. Mag., 2014, vol. 94, pp. 1992–2008.

8. V.A. Kumar, R.K. Gupta, S.V.S.N. Murty, and A.D. Prasad: J. Alloy. Compd., 2016, vol. 676, pp. 527–41.

9. R.K. Gupta, M.K. Karthikeyan, D.N. Bhalia, B.R. Ghosh, and P.P. Sinha: Met. Sci. Heat Treat., 2008, vol. 50, pp. 175–78.

10. J. Teague, E. Cerreta, and M. Stout: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2767–81.

11. N. Yukawa and K. Sato: Mater. Trans. JIM, 1968, vol. 9,pp. 680–86.

12. M. Tanaka and H. Iizuka: Metall. Mater. Trans. A, 1992, vol. 23A, pp. 609–16.

13. T. Narushima, S. Mineta, Y. Kurihara, and K. Ueda: JOM, 2013, vol. 65, pp. 489–504.

14. H.M. Tawancy, V.R. Ishwar, and B.E. Lewis: J. Mater. Sci. Lett., 1986, vol. 5, pp. 337–41.

15. K. Ueki, K. Ueda, M. Nakai, T. Nakano, and T. Narushima:Metall. Mater. Trans. A, 2018, vol. 49A, pp. 2393–2404.

16. Z. Zhu, L. Meng, and L. Chen: Rare Met., 2020, vol. 39,pp. 241–49.

17. K. Ueki, S. Yanagihara, K. Ueda, M. Nakai, T. Nakano, and T. Narushima: Mater. Sci. Eng. A, 2019, vol. 766, art. no. 138400.

18. K. Ueki, K. Ueda, and T. Narushima: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2773–82.

19. C.L. Li, C.H. Park, S.W. Choi, S.W. Lee, J.K. Hong, and J.T. Yeom: Mater. Sci. Eng. A, 2018, vol. 732, pp. 70–77.

20. C.L. Li, J.M. Oh, J.T. Yeom, and C.H. Park: J. Alloys Compd., 2019, vol. 783, pp. 173–78.

21. C.L. Li, J.M. Oh, S.W. Choi, J.K. Hong, J.T. Yeom, X.M. Mei,Q. Mei, Z. Yu, and C.H. Park: Mater. Sci. Eng. A, 2020, vol. 785, art. no. 139388.

22. C.L. Li, S.W. Choi, J.M. Oh, J.K. Hong, J.T. Yeom, J.H. Kang,Q.S. Mei, and C.H. Park: Rare Met., 2021, vol. 40, pp. 20–30.

23. C.L. Li, J.M. Oh, S.W. Choi, X.M. Mei, J.K. Hong, J.T. Yeom,Q.S. Mei, Z.T. Yu, and C.H. Park: Rare Met., 2021, vol. 40,pp. 877–84.

24. Z. Zhu and L. Chen: Mater. Res. Express, 2019, vol. 6, art. no. 126511.

25. K. Ueki, M. Abe, K. Ueda, M. Nakai, T. Nakano, and T. Narushima: Mater. Sci. Eng. A, 2019, vol. 739, pp. 53–61.

26. K. Ueki, S. Yanagihara, K. Ueda, M. Nakai, T. Nakano, and T. Narushima: Mater. Trans., 2021, vol. 62, pp. 229–38.

27. S. Curtze and V.-T. Kuokkala: Acta Mater., 2010, vol. 58,pp. 5129–41.

28. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II, Wiley, New York, NY, 1987, pp. 135–162.

29. T.L. Achmad, W. Fu, H. Chen, C. Zhang, and Z.G. Yang:Comput. Mater. Sci., 2016, vol. 121, pp. 86–96.

30. T.L. Achmad, W. Fu, H. Chen, C. Zhang, and Z.G. Yang: J. Alloys Compd., 2017, vol. 694, pp. 1265–79.

31. Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda, and T. Narushima: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1941–49.

32. E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747–53.

33. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

34. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 78A,pp. 1897–1904.

35. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.

36. W. Huang: Calphad, 1989, vol. 13, pp. 231–42.

37. K. Rajan and J.B.V. Sande: J. Mater. Sci., 1982, vol. 17,pp. 769–78.

38. K. Yamanaka, M. Mori, S. Sato, and A. Chiba: Sci. Rep., 2017, vol. 7, p. 10808.

39. Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A,pp. 355–60.

40. M. Mori, K. Yamanaka, and A. Chiba: J. Mech. Behav. Biomed. Mater., 2015, vol. 55, pp. 201–14.

41. L. Re´my and A. Pineau: Mater. Sci. Eng., 1976, vol. 26,pp. 123–32.

42. H.Y. Ha, M.H. Jang, and T.H. Lee: Electrochim. Acta, 2016, vol. 191, pp. 864–75.

43. T. Nishimura, H. Katayama, K. Noda, and T. Kodama: Corros. Sci., 2000, vol. 42, pp. 1611–21.

44. Q. Wang, Y. Ren, M.B. Shahzad, W. Zhang, X. Pan, S. Zhang, and D. Zhang: Mater. Sci. Eng. C, 2017, vol. 77, pp. 565–71.

45. A. Kocijan, I. Milosˇ ev, and B. Pihlar: J. Mater. Sci. –Mater. Med., 2004, vol. 15, pp. 643–50.

46. Y.S. Zhang, X.M. Zhu, and S.H. Zhong: Corros. Sci., 2004, vol. 46, pp. 853–76.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る