リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting

Cho, Ken 大阪大学

2021.10.01

概要

The microstructure and tensile properties of β-containing Ti–44Al–4Cr alloy rods additively manufactured by electron beam melting (EBM) process were examined as a function of input energy density determined by the processing parameters. To the best of our knowledge, this is the first report to demonstrate that two types of fine microstructures have been obtained in the β-containing γ-TiAl alloys by varying the energy density during the EBM process. A uniform α2/β/γ mixed structure containing an α2/γ lamellar region and a β/γ dual-phase region is formed at high energy density conditions. On the other hand, a lower energy density leads to the formation of a peculiar layered microstructure perpendicular to the building direction, consisting of a ultrafine α2/γ lamellar grain layer and a α2/β/γ mixed structure layer. The difference in the microstructures originates from the dif- ference in the solidification microstructure and the temperature distribution from the melt pool, which are dependent on the energy density. Furthermore, it was found that the strength of the alloys is closely related to the volume fractions of the β phase and the ultrafine α2/γ lamellar grains which originates from the massive α grains formed by rapid cooling under low energy density conditions. The alloys with high amounts of these peculiar microstructures exhibit high strength comparable to and higher than the conventional β-containing γ-TiAl at room temperature and 1023 K, respectively.

参考文献

[1] Y.W. Kim, Ordered intermetallic alloys, part III: gamma titanium aluminides, JOM 46 (1994) 30–39, https://doi.org/10.1007/BF03220745.

[2] P. Bartolotta, J. Barrett, T. Kelly, R. Smashey, The use of cast Ti–48Al–2Cr–2Nb in jet engines, JOM 49 (1997) 48–50, https://doi.org/10.1007/BF02914685.

[3] J. Aguilar, A. Schievenbusch, O. K¨attlitz, Investment casting technology for production of TiAl low pressure turbine blades – Process engineering and parameter analysis, intermetallics 19 (2011) 757–761, https://doi.org/10.1016/j. intermet.2010.11.014.

[4] B.P. Bewlay, S. Nag, A. Suzuki, M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High. Temp. 33 (2016) 549–559, https://doi.org/10.1080/09603409.2016.1183068.

[5] M. Takeyama, S. Kobayashi, Physical metallurgy for wrought gamma titanium aluminides: microstructure control through phase transformations, Intermetallics 13 (2005) 993–999, https://doi.org/10.1016/j.intermet.2004.12.014.

[6] T. Tetsui, K. Shindo, S. Kobayashi, M. Takeyama, A newly developed hot worked TiAl alloy for blades and structural components, Scr. Mater. 47 (2002) 399–403, https://doi.org/10.1016/S1359-6462(02)00158-6.

[7] A. Shaaban, H. Wakabayashi, H. Nakashima, M. Takeyama, Phase equilibria among β/α/α2/γ phases and phase transformations in Ti–Al–Cr system at elevated temperatures, Process. Manuf. 4 (2019) 1471–1476, https://doi.org/10.1557/ adv.2019.111.

[8] H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto, A. Bartels, Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability, Adv. Eng. Mater. 10 (2008) 707–713, https://doi.org/10.1002/ adem.200800164.

[9] M.T. Jovanovi´c, B. Dimˇci´c, I. Bobi´c, S. Zec, V. Maksimovi´c, Microstructure and mechanical properties of precision cast TiAl turbocharger wheel, J. Mater. Process. Technol. 167 (2005) 14–21, https://doi.org/10.1016/j.jmatprotec.2005.03.019.

[10] M. Yamaguchi, High temperature intermetallics – with particular emphasis on TiAl, Mater. Sci. Technol. 8 (1992) 299–307, https://doi.org/10.1179/ mst.1992.8.4.299.

[11] C. Renjie, G. Ming, Z. Hu, G. Shengkai, Interactions between TiAl alloys and yttria refractory material in casting process, J. Mater. Process. Technol. 210 (2010) 1190–1196, https://doi.org/10.1016/j.jmatprotec.2010.03.003.

[12] L. Nickels, AM and aerospace: an ideal combination, Met. Powder Rep. 70 (2015) 300–303, https://doi.org/10.1016/j.mprp.2015.06.005.

[13] T. Nakano, W. Fujitani, T. Ishimoto, J.W. Lee, N. Ikeo, H. Fukuda, K. Kuramoto, Formation of new bone with preferentially oriented biological apatite crystals using a novel cylindrical implant containing anisotropic open pores fabricated by the electron beam melting (EBM) method, ISIJ Int. 51 (2011) 262–268, https://doi. org/10.2355/isijinternational.51.262.

[14] T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel,A. Matsugaki, T. Nagasea, T. Matsuzaka, M. Todai, H.S. Kim, T. Nakano, Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility, Scr. Mater. 194 (2021), 113658, https://doi.org/10.1016/j. scriptamat.2020.113658.

[15] N. Hrabe, T. Quinn, Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM), part 2: energy input, orientation, and location, Mater. Sci. Eng. A 573 (2013) 271–277, https://doi.org/10.1016/j.msea.2013.02.065.

[16] N. Ikeo, T. Ishimoto, T. Nakano, Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications, J. Alloy. Compd. 639 (2015) 336–340, https://doi.org/10.1016/j.jallcom.2015.03.141.

[17] S.H. Sun, Y. Koizumi, S. Kurosu, Y.P. Li, H. Matsumoto, A. Chiba, Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting, Acta Mater. 64 (2014) 154–168, https://doi.org/10.1016/j.actamat.2013.10.017.

[18] X.P. Tan, P. Wang, Y. Kok, W.Q. Toh, Z. Sun, S.M.L. Nai, M. Descoins,D. Mangelinck, E. Liu, S.B. Tor, Carbide precipitation characteristics in additive manufacturing of Co–Cr–Mo alloy via selective election beam melting, Scr. Mater. 143 (2018) 117–121, https://doi.org/10.1016/j.scriptamat.2017.09.022.

[19] L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. MacHado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Microstructural architecture, microstructures, and mechanical properties for a nickel-base superalloy fabricated by electron beam melting, Metall. Mater. Trans. A 42 (2011) 3491–3508, https://doi.org/10.1007/s11661-011-0748-2.

[20] E. Chauvet, P. Kontis, W.A. Ja¨gle, B. Gault, D. Raabe, C. Tassin, J.J. Blandin,R. Dendievel, B. Vayre, S. Abed, G. Martin, Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting, Acta Mater. 142 (2018) 82–94, https://doi.org/10.1016/j.actamat.2017.09.047.

[21] P. Wang, P. Huang, F.L. Ng, W.J. Sin, S. Lu, M.L.S. Nai, Z.L. Dong, J. Wei,Additively manufactured CoCrFeNiMn high-entropy alloy viapre-alloyed powder, Mater. Des. 168 (2019), 107576, https://doi.org/10.1016/j.matdes.2018.107576.

[22] K. Kuwabara, H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, A. Chiba, Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting, Addit. Manuf. 23 (2018) 264–271, https:// doi.org/10.1016/j.addma.2018.06.006.

[23] D. Riedlbauer, T. Scharowsky, R.F. Singer, P. Steinmann, C. Ko¨rner, J. Mergheim, Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti–6Al–4V, Int J. Adv. Manuf. Technol. 88 (2017) 1309–1317, https://doi.org/10.1007/s00170-016-8819-6.

[24] W. Kan, B. Chen, H. Peng, Y. Liang, J. Lin, Formation of columnar lamellar colony grain structure in a high Nb–Ti–Al alloy by electron beam melting, J. Alloy. Compd. 809 (2019), 151673, https://doi.org/10.1016/j.jallcom.2019.151673.

[25] P. Karimia, E. Sadeghi, J. Ålgårdha, J. Andersson, EBM-manufactured single tracks of Alloy 718: influence of energy input and focus offset on geometrical and microstructural characteristics, Mater. Charact. 148 (2019) 88–99, https://doi. org/10.1016/j.matchar.2018.11.033.

[26] J. Schwerdtfeger, C. Ko¨rner, Selective electron beam melting of Ti–48Al–2Nb–2Cr: microstructure and aluminium loss, Intermetallics 49 (2014) 29–35, https://doi. org/10.1016/j.intermet.2014.01.004.

[27] L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater. 58 (2010) 1887–1894, https://doi.org/ 10.1016/j.actamat.2009.11.032.

[28] A.A. Abdulrahman, A. Mohammad, A. Abdullah, A. Basem, A. Abdulrahman,D. Abdelnaser, Predicting surface quality of γ-TiAl produced by additive manufacturing process using response surface method, J. Mech. Sci. Technol. 30 (2016) 345–352, https://doi.org/10.1007/s12206-015-1239-y.

[29] A. Mohammad, A.M. Alahmari, M.K. Mohammed, R.K. Renganayagalu,K. Moiduddin, Effect of energy input on microstructure and mechanical properties of titanium aluminide alloy fabricated by the additive manufacturing process of electron beam melting, Materials 10 (2017) 211, https://doi.org/10.3390/ ma10020211.

[30] Y. Chen, H. Yue, X. Wang, S. Xiao, F. Kong, X. Cheng, H. Peng, Selective electron beam melting of TiAl alloy: microstructure evolution, phase transformation and microhardness, Mater. Charact. 142 (2018) 584–592, https://doi.org/10.1016/j. matchar.2018.06.027.

[31] H. Yue, Y. Chen, X. Wang, F. Kong, Effect of beam current on microstructure, phase, grain characteristic and mechanical properties of Ti–47Al–2Cr–2Nb alloy fabricated by selective electron beam melting, J. Alloy. Compd. 750 (2018) 617–625, https://doi.org/10.1016/j.jallcom.2018.03.343.

[32] Y.K. Kim, S.J. Youn, S.W. Kim, J. Hong, K.A. Lee, High-temperature creep behavior of gamma Ti–48Al–2Cr–2Nb alloy additively manufactured by electron beam melting, Mater. Sci. Eng.: A 763 (2019), 138138, https://doi.org/10.1016/j. msea.2019.138138.

[33] M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda,M. Takeyama, Effect of building direction on the microstructure and tensile properties of Ti–48Al–2Cr–2Nb alloy additively manufactured by electron beam melting, Addit. Manuf. 13 (2017) 61–70, https://doi.org/10.1016/j. addma.2016.11.001.

[34] K. Cho, R. Kobayashi, J.Y. Oh, H.Y. Yasuda, M. Todai, T. Nakano, A. Ikeda,M. Ueda, M. Takeyama, Influence of unique layered microstructure on fatigue properties of Ti–48Al–2Cr–2Nb alloys fabricated by electron beam melting, Intermetallics 95 (2018) 1–10, https://doi.org/10.1016/j.intermet.2018.01.009.

[35] K. Cho, R. Kobayashi, T. Fukuoka, J.Y. Oh, H.Y. Yasuda, M. Todai, T. Nakano,A. Ikeda, M. Ueda, M. Takeyama, Microstructure and fatigue properties of TiAl with unique layered microstructure fabricated by electron beam melting, Mater.Sci. Forum 941 (2018) 1597–1602. 〈https://www.scientific.net/MSF.941.1597〉.

[36] M. Sakata, J.Y. Oh, K. Cho, H.Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, M. Ueda,M. Takeyama, Effects of heat treatment on unique layered microstructure and tensile properties of TiAl fabricated by electron beam melting, Mater. Sci. Forum 941 (2018) 1366–1371. 〈https://www.scientific.net/MSF.941.1366〉.

[37] R. Wartbichler, H. Clemens, S. Mayer, Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy, Adv. Eng. Mater. 21 (2019), 1900800, https://doi.org/10.1002/adem.201900800.

[38] P.L. Narayana, C.L. Li, S.W. Kim, S.E. Kim, A. Marquardt, C. Leyens, N.S. Reddy, J.T. Yeom, J.K. Hong, High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800 ◦C, Mater. Sci. Eng. A 756 (2019) 41–45, https://doi. org/10.1016/j.msea.2019.03.114.

[39] E. Cox, A method of assigning numerical and percentage values to the degree of roundness of sand grains, J. Paleontol. 1 (1927) 179–183.

[40] Y.Y. Sun, Gulizia, C.H. Oh, C. Doblin, Y.F. Yang, M. Qian, Manipulation and characterization of a novel titanium powder precursor for additive manufacturing applications, JOM 67 (2015) 564–752, https://doi.org/10.1007/s11837-015-1301-3.

[41] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese,P. Gennaro, C. Badini, Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics 19 (2011) 776–781, https://doi.org/10.1016/j.intermet.2010.11.017.

[42] Y. Zhao, K. Aoyagi, K. Yamanaka, A. Chiba, Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting, Addit. Manuf. (2019), 101559, https://doi.org/10.1016/j. addma.2020.101559.

[43] J. Han, J. Dong, S. Zhang, C. Zhang, S. Xiao, Y. Chen, Microstructure evolution and tensile properties of conventional cast TiAl based alloy with trace Ni addition, Mater. Sci. Eng. A 715 (2018) 41–48, https://doi.org/10.1016/j. msea.2017.12.092.

[44] J. Yang, Z. Gao, X. Zhang, R. Hu, Continuous-cooling-transformation (CCT) behaviors and fine-grained nearly lamellar (FGNL) microstructure formation in a cast Ti–48Al–4Nb–2Cr alloy, Metall. Mater. Trans. A 51 (2020) 5285–5295, https://doi.org/10.1007/s11661-020-05934-7.

[45] E. Schwaighofer, H. Clemens, S. Mayer, J. Lindemann, J. Klose, W. Smarsly,V. Güther, Microstructural design and mechanical properties of a cast and heat- treated intermetallic multi-phase γ-TiAl based alloy, Intermetallics 44 (2014) 128–140, https://doi.org/10.1016/j.intermet.2013.09.010.

[46] L.J. Signori, T. Nakamura, Y. Okada, R. Yamagata, H. Nakashima, M. Takeyama, Fatigue crack growth behavior of wrought γ-based TiAl alloy containing β-phase, Intermetallics 100 (2018) 77–87, https://doi.org/10.1016/j. intermet.2018.04.024.

[47] M.A. Morris, Dislocation configurations in two phase TiAl alloys. I. Annealed and indented structures, Philos. Mag. A 68 (1993) 237–257, https://doi.org/10.1080/01418619308221203.

[48] H. Inui, K. Kishida, M. Misaki, M. Kobayashi, Y. Shirai, M. Yamaguchi, Temperature dependence of yield stress, tensile elongation and deformation structures in polysynthetically twinned crystals of Ti–Al, Philos. Mag. A 72 (1995) 1609–1631, https://doi.org/10.1080/01418619508243933.

[49] H.Y. Yasuda, T. Nakano, Y. Umakoshi, The deformation substructure in cyclically deformed TiAl PST crystals, Philos. Mag. A 73 (1996) 1035–1051, https://doi.org/ 10.1080/01418619608243702.

[50] T. Nakano, H. Biermann, M. Riemer, H. Mughrabi, Y. Nakai, Y. Umakoshi, Classification of γ-γ and γ-α2 lamellar boundaries on the basis of continuity of strains and slip-twinning planes in fatigued TiAl polysynthetically twinned crystals, Philos. Mag. A 81 (2001) 1447–1471, https://doi.org/10.1080/014186100100021618.

[51] M. Schloffer, B. Rashkova, T. Scho¨berl, E. Schwaighofer, Z. Zhang, H. Clemens,S. Mayer, Evolution of the ωo phase in a β-stabilized multi-phase TiAl alloy and its effect on hardness, Acta Mater. 64 (2014) 241–252, https://doi.org/10.1016/j. actamat.2013.10.036.

[52] X. Wang, J. Yang, K. Zhang, R. Hu, L. Song, H. Fu, Atomic-scale observations of B2→ ω-related phases transition in high-Nb containing TiAl alloy, Mater. Charact. 130 (2017) 135–138, https://doi.org/10.1016/j.matchar.2017.06.003.

[53] T.B. Massalski, Massive transformations revisited, Metall. Mater. Trans. A 33 (2002) 2277–2283, https://doi.org/10.1007/s11661-002-0351-7.

[54] M. Kastenhuber, T. Klein, B. Rashkova, I. Weißensteiner, H. Clemens, S. Mayer, Phase transformations in a β-solidifying γ-TiAl based alloy during rapid solidification, Intermetallics 91 (2017) 100–109, https://doi.org/10.1016/j. intermet.2017.08.017.

[55] Z.C. Liu, J.P. Lin, S.J. Li, G.L. Chen, Effects of Nb and Al on the microstructures and mechanical properties of high Nb containing TiAl base alloys, Intermetallics 10 (2002) 653–659, https://doi.org/10.1016/S0966-9795(02)00037-7.

[56] Y. Umakoshi, T. Nakano, The role of ordered domains and slip mode of α2 phase in the plastic behaviour of TiAl crystals containing oriented lamellae, Acta Metall. Mater. 41 (1993) 1155–1161, https://doi.org/10.1016/0956-7151(93)90163-M.

[57] Y.Q. Yan, Z.Q. Zhang, G.Z. Luo, K.G. Wang, L. Zhou, Microstructures observation and hot compressing tests of TiAl based alloy containing high Nb, Mater. Sci. Eng. A 280 (2000) 187–191, https://doi.org/10.1016/S0921-5093(99)00664-4.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る