リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Retinoic acid regulates erythropoietin production cooperatively with hypoxia-inducible factors in human iPSC-derived erythropoietin-producing cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Retinoic acid regulates erythropoietin production cooperatively with hypoxia-inducible factors in human iPSC-derived erythropoietin-producing cells

Katagiri, Naoko Hitomi, Hirofumi Mae, Shin-Ichi Kotaka, Maki Lei, Li Yamamoto, Takuya Nishiyama, Akira Osafune, Kenji 京都大学 DOI:10.1038/s41598-021-83431-6

2021.02.16

概要

Erythropoietin (EPO) is a crucial hormone for erythropoiesis and produced by adult kidneys. Insufficient EPO production in chronic kidney disease (CKD) can cause renal anemia. Although hypoxia-inducible factors (HIFs) are known as a main regulator, the mechanisms of EPO production have not been fully elucidated. In this study, we aimed to examine the roles of retinoic acid (RA) in EPO production using EPO-producing cells derived from human induced pluripotent stem cells (hiPSC-EPO cells) that we previously established. RA augmented EPO production by hiPSC-EPO cells under hypoxia or by treatment with prolyl hydroxylase domain-containing protein (PHD) inhibitors that upregulate HIF signals. Combination treatment with RA and a PHD inhibitor improved renal anemia in vitamin A-depleted CKD model mice. Our findings using hiPSC-EPO cells and CKD model mice may contribute to clarifying the EPO production mechanism and developing efficient therapies for renal anemia.

この論文で使われている画像

参考文献

1. Bondurant, M. C. & Koury, M. J. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell. Biol.

6, 2731–2733 (1986).

2. Yamamoto, H. et al. 2015 Japanese society for dialysis therapy: guidelines for renal anemia in chronic kidney disease. Ren. Replace.

Ther. 3, 36 (2017).

3. Sakaguchi, Y., Hamano, T., Wada, A. & Masakane, I. Types of erythropoietin-stimulating agents and mortality among patients

undergoing hemodialysis. J. Am. Soc. Nephrol. 30, 1037–1048 (2019).

4. Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin

gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992).

5. Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell.

Biol. 16, 4604–4613 (1996).

6. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxiainducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).

7. De Seigneux, S. et al. Increased synthesis of liver erythropoietin with CKD. J. Am. Soc. Nephrol. 27, 2265–2269 (2016).

8. Hitomi, H. et al. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice (Sci. Transl,

Med, 2017).

9. Clagett-Dame, M. & Knutson, D. Vitamin a in reproduction and development. Nutrients 3, 385–428 (2011).

10. Ross, A. C. Vitamin A and retinoic acid in T cell-related immunity. Am. J. Clin. Nutr. 96, 1166–1172 (2012).

11. Timoneda, J. et al. Vitamin A deficiency and the lung. Nutrients 10, (2018).

12. Evans, R. M. The steroid and thyroid hormone receptor superfamily on JSTOR. Science (80-. ). 240, 889–895 (1988).

13. le Maire, Teyssier, Balaguer, Bourguet & Germain. Regulation of RXR-RAR heterodimers by RXR- and RAR-specific ligands and

their combinations. Cells 8, 1392 (2019).

14. Makita, T. et al. A developmental transition in definitive erythropoiesis: Erythropoietin expression is sequentially regulated by

retinoic acid receptors and HNF4. Genes Dev. (2001).

15. Makita, T., Duncan, S. A. & Sucov, H. M. Retinoic acid, hypoxia, and GATA factors cooperatively control the onset of fetal liver

erythropoietin expression and erythropoietic differentiation. Dev. Biol. 280, 59–72 (2005).

16. Tyson, J. E. et al. Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human

Development Neonatal Research Network. N. Engl. J. Med. 340, 1962–8 (1999).

17. Majewski, S., Marczak, M., Szmurlo, A., Jablonska, S. & Bollag, W. Retinoids, Interferon α, 1,25-dihydroxyvitamin D3 and their

combination inhibit angiogenesis induced by non-HPV-harboring tumor cell lines. RARα mediates the antiangiogenic effect of

retinoids. Cancer Lett. 89, 117–124 (1995).

18. Ozkan, H. et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental

retinopathy of prematurity. Physiol. Res. 55, 267–275 (2006).

19. Brade, T. et al. Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial

Igf2. Development (2011).

20. Dawson, M. I. & Xia, Z. The retinoid X receptors and their ligands. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1821, 21–56 (2012).

21. Flamme, I. et al. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (molidustat) stimulates erythropoietin production without hypertensive effects. PLoS One 9, (2014).

22. Ariazi, J. L. et al. Discovery and preclinical characterization of gsk1278863 (daprodustat), a small molecule hypoxia inducible

factor-prolyl hydroxylase inhibitor for anemias. J. Pharmacol. Exp. Ther. 363, 336–347 (2017).

23. Jones, S. M., Novak, A. E. & Elliott, J. P. The role of HIF in cobalt-induced ischemic tolerance. Neuroscience 252, 420–430 (2013).

24. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer

regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 92, 5510–5514 (1995).

25. Eleftheriadis, T., Pissas, G., Antoniadi, G., Liakopoulos, V. & Stefanidis, I. Kynurenine, by activating aryl hydrocarbon receptor,

decreases erythropoietin and increases hepcidin production in HepG2 cells: A new mechanism for anemia of inflammation. Exp.

Hematol. 44, 60-67.e1 (2016).

26. Tsuchiya, T., Okada, M., Zhang, W. & Yasukochi, Y. Regulation of the erythropoietin gene by gata transcription factors. Jpn. J.

Hum. Genet. 42, 141 (1997).

27. Rahman, A. et al. A novel approach to adenine-induced chronic kidney disease associated anemia in rodents. PLoS ONE 13, 1–17

(2018).

28. Okano, M. et al. Retinoic acid up-regulates erythropoietin production in hepatoma cells and in vitamin A-depleted rats. FEBS

Lett. 349, 229–233 (1994).

29. Goldberg, M. A., Glass, G. A., Cunningham, J. M. & Bunn, H. F. The regulated expression of erythropoietin by two human hepatoma

cell lines. Proc. Natl. Acad. Sci. USA. 84, 7972–7976 (1987).

30. Sherwin, J. C., Reacher, M. H., Dean, W. H. & Ngondi, J. Epidemiology of vitamin A deficiency and xerophthalmia in at-risk

populations. Trans. R. Soc. Trop. Med. Hyg. 106, 205–214 (2012).

31. Clifford, L. J., Turnbull, A. M. J. & Denning, A. M. Reversible night blindness: A reminder of the increasing importance of vitamin

A deficiency in the developed world. J. Optom. 6, 173–174 (2013).

32. Martínez-Moneo, E. et al. Deficiency of fat-soluble vitamins in chronic pancreatitis: A systematic review and meta-analysis.

Pancreatology 16, 988–994 (2016).

33. Nyberg, A. et al. Impaired release of vitamin a from liver in primary biliary cirrhosis. Hepatology 8, 136–141 (1988).

34. Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element

located 3′ to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA. 88, 5680–5684 (1991).

35. Durand, B., Saunders, M., Leroy, P., Leid, M. & Chambon, P. All-trans and 9-cis retinoic acid induction of CRABPII transcription

is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71, 73–85 (1992).

36. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309

(2010).

37. Janknecht, R. & Hunter, T. Transcriptional control: Versatile molecular glue. Curr. Biol. 6, 951–954 (1996).

Scientific Reports |

(2021) 11:3936 |

https://doi.org/10.1038/s41598-021-83431-6

11

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

38. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

39. Kobayashi, A., Numayama-Tsuruta, K., Sogawa, K. & Fujii-Kuriyama, Y. CBP/p300 functions as a possible transcriptional coactivator of Ah receptor nuclear translocator (Arnt). J. Biochem. 122, 703–710 (1997).

40. Gillespie, R. F. & Gudas, L. J. Retinoic acid receptor isotype specificity in F9 teratocarcinoma stem cells results from the differential

recruitment of coregulators to retinoic acid response elements. J. Biol. Chem. 282, 33421–33434 (2007).

41. Gillespie, R. F. & Gudas, L. J. Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12

with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. J. Mol. Biol. 372,

298–316 (2007).

42. Shinfuku, A. et al. Novel compound induces erythropoietin secretion through liver effects in chronic kidney disease patients and

healthy volunteers. Am. J. Nephrol. (2018).

43. Hirano, I. et al. Renal anemia model mouse established by transgenic rescue with an erythropoietin gene lacking kidney-specific

regulatory elements. Mol. Cell. Biol. 37, (2017).

44. Okita, K. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood

and peripheral blood cells. Stem Cells (2013).

45. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: A method for assaying chromatin accessibility genome-wide.

Curr. Protoc. Mol. Biol. 2015, 21.29.1–21.29.9 (2015).

46. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

47. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

48. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842

(2010).

49. James T Robinson et al. 1b - Dataset normalization. Nat. Biotechnol. 29, 24–26 (2011).

50. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, (2008).

51. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for

macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

Acknowledgements

The authors would like to thank Drs. T. Toyoda, T. Araoka, K. Yasuda, A. Kimura, A. Mima, M. Ryosaka, H.

Tsujimoto, H. Ikeda, S. Sakurai, and J. Asahira for technical support and helpful suggestions, Dr. P. Karagiannis

for reading and critically revising the manuscript, and Ms. E. Moriguchi and A. Date for their excellent secretarial assistance. This work was partially supported by the Japan Society for the Promotion of Science (JSPS)

through its Grant-in-Aid for Challenging Research (Exploratory) (JSPS KAKENHI Grant Number 18K19542)

to K.O., by Daiichi Sankyo Foundation of Life Science through its research grant to K.O, and by the Japan

Agency for Medical Research and Development (AMED) through its research grant “Projects for Technological

Development and Core Center for iPS Cell Research, Research Center Network for Realization of Regenerative

Medicine” to K.O. and T. Y. The ASHBi is supported by World Premier International Research Center Initiative

(WPI), MEXT, Japan.

Author contributions

N.K.: conception and design, collection and/or assembly of data, data analysis and interpretation, manuscript

writing, and final approval of the manuscript. H.H.: conception and design, data analysis and interpretation,

manuscript writing, and final approval of the manuscript. S.M., M.K., and A.N.: conception and design, data

analysis and interpretation, and final approval of the manuscript. L.L.: conception and design, collection and/or

assembly of data, and final approval of the manuscript. T.Y. and K.O.: conception and design, financial support,

data analysis and interpretation, manuscript writing, and final approval of the manuscript.

Competing interests K.O. is a founder and member without the salary of the scientific advisory boards of iPS Portal, Inc., and a

founder and chief scientific advisor of RegeNephro Co., Ltd. The other authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https​://doi.

org/10.1038/s4159​8-021-83431​-6.

Correspondence and requests for materials should be addressed to K.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

Scientific Reports |

Vol:.(1234567890)

(2021) 11:3936 |

https://doi.org/10.1038/s41598-021-83431-6

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る