リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the early physiologial responses governing heat stress-inducible gene expression in the red alga Neopyropia yezoensis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the early physiologial responses governing heat stress-inducible gene expression in the red alga Neopyropia yezoensis

HO, KHOA VIET 北海道大学

2022.09.26

概要

Heat stress responses are complex regulatory processes, including sensing, signal transduction, and gene expression. However, the exact mechanisms of these processes in seaweeds are not well known. We explored the relationship between membrane physical states and gene expression in the red alga Neopyropia yezoensis. To analyze heat stress-induced gene expression, we identified two homologs of the heat-inducible high temperature response 2 (HTR2) gene in Neopyropia seriata, named NyHTR2 and NyHTR2L. We found conservation of HTR2 homologs only within the order Bangiales; their products contained a novel conserved cysteine repeat we designated the Bangiales cysteine-rich motif. A quantitative mRNA analysis showed that expression of NyHTR2 and NyHTR2L was induced by heat stress. However, the membrane fluidizer benzyl alcohol (BA) did not induce expression of these genes, indicating that the effect of heat was not due to membrane fluidization. In contrast, expression of genes encoding multiprotein-bridging factor 1 (NyMBF1) and heat shock protein 70 (NyHSP70-1 and NyHSP70-2) was induced by heat stress and by BA, indicating that it involved a membrane fluidization-dependent pathway. In addition, dark treatment under heat stress promoted expression of NyHTR2, NyHTR2L, NyMBF1, and NyHSP70-2 but not NyHSP70-1; expression of NyHTR2 and NyHTR2L was membrane fluidization independent and that of other genes was membrane fluidization dependent. These findings indicate that the heat stress response in N. yezoensis involves membrane fluidization-dependent and -independent pathways.

この論文で使われている画像

参考文献

Abdelrahman, M. L., Ishii, T., El-Sayed, M., Tran, L. S. P. 2020. Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. Plant Cell Physiol. 61, 1399-1407.

Anderson, J. V., Li, Q. B., Haskell, D. W., Guy, C. L. 1994. Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol. 104, 1359.

Awasthi, R., Bhandari, K., Nayyar, H. 2015. Temperature stress and redox homeostasis in agricultural crops. Front. Environ. Sci. 3, 11.

Bourgine, B., Guihur, A. 2021. Heat shock signaling in land plants: From plasma membrane sensing to the transcription of small heat shock proteins. Front. Plant Sci. 12, 710801.

Brawley, S.,H., Blouin, N.,A., Ficko-Blean, E., Wheeler, G.,L., Lohr, M., Goodson, H.,V., Jenkins, J.,W., Blaby-Haas, C.,E., Helliwell, K.,E., Chan, C.,X., Marriage, T.,N., Bhattacharya, D., Klein, A.,S., Badis, Y. Brodie, J.

Cao, Y. Collén, J., Dittami, S. M., Gachon, C., Green, B. R., Prochnik, S. E. 2017. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc. Natl. Acad. Sci. U.S.A. 114(31), E6361–E6370.

Cano-Ramirez, D. L., Carmona-Salazar, L., Morales-Cedillo, F., Ramírez-Salcedo, J., Cahoon, E. B., Gavilanes-Ruíz, M. 2021. Plasma membrane fluidity: An environment thermal detector in Plants. Cells 10, 2778. de Vries, J., de Vries, S., Curtis, B. A., Zhou, H., Penny, S., Feussner, K., Pinto,

D. M., Steinert, M., Cohen, A. M., von Schwartzenberg, K., Archibald, J. M. 2020. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. The Plant journal: for cell and molecular biology 103(3), 1025–1048.

de Vries, J., Ischebeck, T. 2020. Ties between Stress and Lipid Droplets Pre-date Seeds. Trends Plant Sci. 25(12), 1203–1214.

Deng, X., Wang, J., Li, Y., Wu, S., Yang, S., Chao, J., Chen, Y., Zhang, S., Shi, M., Tian, W. M. 2018. Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ROS scavenger mediate the cold-tolerance of rubber tree. Sci. Rep. 8, 4931.

Falcone, D. L., Ogas, J. P., Somerville, C. R. 2004. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4, 17.

Fedyaeva, A. V., Stepanov, A. V., Lyubushkina, I. V., Pobezhimova, T. P., Rikhvanov, E. G. 2014. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells. Biochem. (Moscow) 79, 1202-1210.

Finka, A., Goloubinoff, P. 2014. The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. Cell Stress Chaperones 19, 83-90.

Hayes, S., Schachtschabel, J., Mishkind, M., Munnik, T., Arisz, S. A. 2020. Hot topic: Thermosensing in plants. Plant Cell Environ. 44, 2018-2033.

Higashi, Y., Saito, K. 2019. Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog. Lipid Res. 75, 100990.

Hunter, D. A., Napier, N. J., Erridge, Z. A., Saei, A., Chen, R. K. Y., McKenzie, M. J., O'Donoghue, E. M., Hunt, M., Favre, L., Lill, R. E., Brummell, D. A. 2021. Transcriptome responses of ripe cherry tomato fruit exposed to chilling and rewarming identify reversible and irreversible gene expression changes. Front. Plant Sci. 12, 685416.

Hwang, E. K., Park, C. S. 2020. Seaweed cultivation and utilization of Korea. Algae 35, 107-121.

Jaimes-Miranda, F., Chávez Montes, R. A. 2020. The plant MBF1 protein family: a bridge between stress and transcription. J. Exp. Bot. 71, 1782-1791.

Jajic, I., Sarna, T., Szewczyk, G., Strzalka, K. 2015. Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. J. Plant Physiol. 184, 49-56.

Ji, D., Li, B., Xu, Y., Chen, C., Xie, C. 2015. Cloning and quantitative analysis of five heat shock protein 70 genes from Pyropia haitanensis. J. Appl. Phycol. 27, 499- 509.

Katano, K., Kataoka, R., Fujii, M., Suzuki, N. 2018. Differences between seedlings and flowers in anti-ROS based heat responses of Arabidopsis plants deficient in cyclic nucleotide gated channel 2. Plant Physiol. Biochem. 123, 288-296.

Khoa, H. V., Kumari, P., Uchida, H., Murakami, A., Shimada, S., Mikami, K. 2021. Heat-stress responses differ among species from different 'Bangia' clades of Bangiales (Rhodophyta). Plants (Basel) 22, 1733.

Kim, E., Park, H. S., Jung, Y., Choi, D. W., Jeong, W. J., Park, H. S. 2011. Identification of the high-temperature response genes from Porphyra seriata (Rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the Porphyra HTR2 gene1: high-temperature stress in Porphyra. J. Phycol. 47, 821-828.

Kishimoto, I., Ariga, I., Itabashi, Y., Mikami, K. 2019. Heat-stress memory is responsible for acquired thermotolerance in Bangia fuscopurpurea. J Phycol. 55, 971-975.

Kong, F., Cao, M., Sun, P., Liu, W., Mao, Y. 2015. Selection of reference genes for gene expression normalization in Pyropia yezoensis, using quantitative real-time PCR. J. Appl. Phycol. 27, 1003-1010.

Königshofer, H., Tromballa, H. W., Löppert, H. G. 2008. Early events in signaling high‐ temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant Cell Environ. 31, 1771–1780.

Lawal, G., Mohd, S. M. A., Siti, N. O., Raja, N. Z. 2017. Review on fatty acid desaturases and their roles in temperature acclimatisation. J. Appl. Sci. 17, 282-295.

Li, C., Ariga, I., Mikami, K. 2019. Difference in nitrogen starvation-inducible expression patterns among phylogenetically diverse ammonium transporter genes in the red seaweed Pyropia yezoensis. Am. J. Plant Sci. 10, 1325–1349.

Li, Q. B., Haskell, D. W., Guy, C. L. 1999. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato. Plant Mol. Biol. 39, 21-34.

Lopes-Caitar, V. S., de Carvalho, M. C., Darben, L. M., Kuwahara, M. K., Nepomuceno, A. L., Dias, W. P. 2013. Genome-wide analysis of the Hsp 20 gene family in soybean: Comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses. BMC Genomics 14, 577.

Ludwig, W., Hayes, S., Trenner, J., Delker, C., Quint., M. 2021. On the evolution of plant thermomorphogenesis. J. Exp. Bot. 72(21), 7345–7358.

Mikami, K., Li, C., Irie, R. 2019. A unique life cycle transition in the red seaweed Pyropia yezoensis depends on apospory. Commun Biol. 2, 299.

Miyamoto, K., Fujiwara, Y., Saito, K. 2019. Zinc finger domain of the human DTX protein adopts a unique RING fold. Protein Sci. 28, 1151–1156.

Miyamoto, K., Uechi, A., Saito, K. 2017. The zinc finger domain of RING finger protein 141 reveals a unique RING fold. Protein Sci. 26, 1681-1686.

Mueller, S.P.; Krause, D.M.; Mueller, M.J.; Fekete, A. 2015. Accumulation of extra-chloroplastic triacylglycerols in Arabidopsis seedlings during heat acclimation. J. Exp. Bot. 66(15), 4517–4526.

Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., Iba, K. 2000. Trienoic fatty acids and plant tolerance of high temperature. Science 287, 476-479.

Narayanan, S. 2020. Comparative lipidomic analysis reveals heat stress responses of two soybean genotypes differing in temperature sensitivity. Plants 9, 57.

Ohama, N., Sato, H., Shinozaki, K., Yamaguchi-Shinozaki, K. 2017. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 22, 53-65.

Petroll, R., Schreiber, M., Finke, H., Cock, J. M., Gould, S. B., Rensing, S. A. 2021. Signatures of transcription factor evolution and the secondary gain of red algae complexity. Genes 12, 1055.

Rawat, N., Singla-Pareek, S. L., Pareek, A. 2021. Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plant. 171, 653-676.

Rieseberg, T. P., Dadras, A., Fürst-Jansen, J., Dhabalia Ashok, A., Darienko, T., de Vries, S., Irisarri, I., de Vries, J. 2022. Crossroads in the evolution of plant specialized metabolism. Seminars in cell & developmental biology S1084-9521(22)00073-8.

Rütgers, M., Muranaka, L. S., Schulz‐ Raffelt, M., Thoms, S., Schurig, J., Willmund, F., Schroda, M. 2017. Not changes in membrane fluidity but proteotoxic stress triggers heat shock protein expression in Chlamydomonas reinhardtii. Plant Cell Environ. 40, 2987–3001.

Sabehat, A., Lurie, S., Weiss, D. 1998. Expression of small heat-shock proteins at low temperatures. Plant Physiol. 117, 651-658.

Saidi, Y., Finka, A, Muriset, M., Bromberg, Z., Weiss, Y.G., Maathuis, F. J., and Goloubinoff, P. 2009. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell. 21, 2829–2843.

Saidi, Y., Finka, A., Goloubinoff, P. 2011. Heat perception and signaling in plants: a tortuous path to thermotolerance. New Phytol. 190, 556-65.

Sangwan, V., Orvar, B. L., Beyerly, J., Hirt, H., Dhindsa, R.S. 2010. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31, 629–638.

Schmollinger, S., Schulz-Raffelt, M., Strenkert, D., Veyel, D., Vallon, O., Schroda, M. 2013. Dissecting the heat stress response in Chlamydomonas by pharmaceutical and RNAi approaches reveals conserved and novel aspects. Mol. Plant 6, 1795–1813.

Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E., von Koskull-Döring, P.A. 2008. Cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53, 264-74.

Shiva, S. 2020. Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants 9, 845.

Sun, A. Z., Guo, F. Q. 2016. Chloroplast retrograde regulation of heat stress responses in plants. Front. Plant Sci. 7, 398.

Sun, P., Mao, Y., Li, G., Cao, M., Kong, F., Wang, L., Bi, G. 2015. Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16, 463.

Suri, S. S., Dhindsa, R. S. 2008. A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell Environ. 31, 218-26.

Thiriet-Rupert, S., Carrier, G., Chénais, B., Trottier, C., Bougaran, G., Cadoret, J. P., Schoefs, B., Saint-Jean, B. 2016. Transcription factors in microalgae: genome-wide prediction and comparative analysis. BMC Genomics 17, 282.

Uji, T., Takahashi, M., Saga, N., Mikami, K. 2010. Visualization of nuclear localization of transcription factors with cyan and green fluorescent proteins in the red alga Porphyra yezoensis. Mar. Biotechnol. 12, 150-159.

Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., Schoffl, F. 2006. Heat stressinduced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61, 733-746.

Wang, H. S., Yu, C., Tang, X. F., Wang, L. Y., Dong, X. C., Meng, Q. W. 2010. Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol. 52(6):568-77.

Wang, W., Teng, F., Lin, Y., Ji, D., Xu, Y., Chen, C. 2018. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis. PLoS One 13, e0195842.

Wu, X., Huang, A., Xu, M., Wang, C., Jia, Z., Wang, G., Niu, J. 2013. Variation of expression levels of seven housekeeping genes at different life-history stages in Porphyra yezoensis. PLoS One 8, e60740.

Yan, K., Chen, N., Qu, Y. Y., Dong, X. C., Meng, Q. W., Zhao, S. J. 2008. Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. J. Integr. Plant Biol. 50, 613-21.

Yoshida, G., Shimabukuro, H., Kiyomoto, S., Kadota, T., Yoshimura, T., Murase, N., Noda, M., Takenaka, S., Kono, Y., Tamura, T., Tanada, N., Yu, X.,

Yoshie, N., Guo, X. 2019. Assessment and future prediction of climate change impacts on the macroalgal bed ecosystem and cultivation in the Seto Inland Sea. Bull. Jap. Fish. Res. Edu. Agen. 49, 27-34.

Yoshida, T., Ohama, N., Nakajima, J., Kidokoro, S., Mizoi, J., Nakashima, K., Maruyama, K., Kim, J. M., Seki, M., Todaka, D., Osakabe, Y., Sakuma, Y., Schöffl, F., Shinozaki, K., Yamaguchi-Shinozaki, K. 2011. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol. Genet. Genom. 286, 321-332.

Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K. 2008. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 368, 515-21.

Yu, X., Mo, Z., Tang, X. 2021. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress. BMC Plant Biol. 21, 435.

Zhou, X., Wang, P., Yan, B., Li, X., Yi, L. 2011. Characterization and expression patterns of two 70-kDa heat shock protein genes in the intertidal red alga Porphyra yezoensis. Bot. Mar. 54, 447-455.

Zoong, L. Z., Sah, S., Persaud, L., Li, J., Gao, W., Raja Reddy, K., Narayanan, S. 2021. Alterations in the leaf lipidome of Brassica carinata under hightemperature stress. BMC Plant Biol. 21, 404.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る