リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spectral Tuning Mechanism of Photosynthetic Light-Harvesting Complex II Revealed by Ab Initio Dimer Exciton Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spectral Tuning Mechanism of Photosynthetic Light-Harvesting Complex II Revealed by Ab Initio Dimer Exciton Model

Fujimoto, Kazuhiro J. Minoda, Takumi Yanai, Takeshi 名古屋大学

2021.09.23

概要

Excited states of two kinds of bacteriochlorophyll (BChl) aggregates, B850 and B800, in photosynthetic light-harvesting complex II (LH2) are theoretically investigated by developing and using an extended exciton model considering efficiently-evaluated excitonic coupling. Our exciton model based on dimer fragmentation is shown to reproduce the experimental absorption spectrum of LH2 with good accuracy, entailing their different redshifts originating from aggregations of B850 and B800. The systematic analysis has been performed on the spectra by quantitatively decomposing their spectral shift energies into the contributions of various effects: structural distortion, electrostatic, excitonic coupling, and charge-transfer (CT) effects. Our results show that the spectral redshift of B800 is mainly attributed to its electrostatic interaction with the protein environment, while that of B850 arises from the marked effect of the excitonic coupling between BChl units. The inter-chromophore CT excitation also plays a key role in the spectral redshift of B850. This CT effect can be effectively described using our dimer model. This suited characterization reveals that the pronounced CT effect originates from the characteristics of B850 that has closely-spaced BChls as dimers. We highlight an importance of the refinement of the crystal structure with use of quantum chemical methods for prediction of the spectrum.

この論文で使われている画像

参考文献

1. Kazmaier, P. M.; Hoffmann, R., A Theoretical Study of Crystallochromy. Quantum Interference Effects in the Spectra of Perylene Pigments. J. Am. Chem. Soc. 1994, 116, 9684-9691.

2. Valdes-Aguilera, O.; Neckers, D. C., Aggregation Phenomena in Xanthene Dyes. Acc. Chem. Res. 1989, 22, 171-177.

3. de Diesbach, H.; von der Weid, E., Quelques sels complexes des o-dinitriles avec le cuivre et la pyridine. Helv. Chim. Acta 1927, 10, 886-888.

4. Lucia, E. A.; Verderame, F. D., Spectra of Polycrystalline Phthalocyanines in the Visible Region. J. Chem. Phys. 1968, 48, 2674-2681.

5. Scholes, G. D., Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First? J. Phys. Chem. Lett. 2010, 1, 2-8.

6. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R., Lessons from nature about solar light harvesting. Nat. Chem. 2011, 3, 763-774.

7. Adolphs, J.; Müh, F.; Madjet, M. E.; Schmidt am Busch, M.; Renger, T., Structure-Based Calculations of Optical Spectra of Photosystem I Suggest an Asymmetric Light-Harvesting. J. Am. Chem. Soc. 2010, 132, 3331-3343.

8. Cassim, J. Y., Unique biphasic band shape of the visible circular dichroism of bacteriorhodopsin in purple membrane. Biophys. J. 1992, 63, 1432-1442.

9. Georgakopoulou, S.; van Grondelle, R.; van der Zwan, G., Circular Dichroism of Carotenoids in Bacterial Light-Harvesting Complexes: Experiments and Modeling. Biophys. J. 2004, 87, 3010-3022.

10. Cheng, Y.-C.; Fleming, G. R., Dynamics of Light Harvesting in Photosynthesis. Annu. Rev. Phys. Chem. 2009, 60, 241-262.

11. Saito, S.; Higashi, M.; Fleming, G. R., Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna–Matthews–Olson Protein. J. Phys. Chem. B 2019, 123, 9762-9772.

12. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W., Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 1995, 374, 517-521.

13. Koepke, J.; Hu, X.; Muenke, C.; Schulten, K.; Michel, H., The crystal structure of the light- harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 1996, 4, 581- 597.

14. Papiz, M. Z.; Prince, S. M.; Howard, T.; Cogdell, R. J.; Isaacs, N. W., The Structure and Thermal Motion of the B800–850 LH2 Complex from Rps. acidophila at 2.0 Å Resolution and 100 K: New Structural Features and Functionally Relevant Motions. J. Mol. Biol. 2003, 326, 1523- 1538.

15. Cogdell, R. J.; Gall, A.; Kö hler, J., The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 2006, 39, 227-324.

16. Polívka, T.; Zigmantas, D.; Herek, J. L.; He, Z.; Pascher, T.; Pullerits, T.; Cogdell, R. J.; Frank, H. A.; Sundström, V., The Carotenoid S1 State in LH2 Complexes from Purple Bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S1 Energies, Dynamics, and Carotenoid Radical Formation. J. Phys. Chem. B 2002, 106, 11016-11025.

17. Polli, D.; Cerullo, G.; Lanzani, G.; De Silvestri, S.; Hashimoto, H.; Cogdell, R. J., Carotenoid-Bacteriochlorophyll Energy Transfer in LH2 Complexes Studied with 10-fs Time Resolution. Biophys. J. 2006, 90, 2486-2497.

18. Cong, H.; Niedzwiedzki, D. M.; Gibson, G. N.; LaFountain, A. M.; Kelsh, R. M.; Gardiner, A. T.; Cogdell, R. J.; Frank, H. A., Ultrafast Time-Resolved Carotenoid to-Bacteriochlorophyll Energy Transfer in LH2 Complexes from Photosynthetic Bacteria. J. Phys. Chem. B 2008, 112, 10689-10703.

19. Yoneda, Y.; Noji, T.; Katayama, T.; Mizutani, N.; Komori, D.; Nango, M.; Miyasaka, H.; Itoh, S.; Nagasawa, Y.; Dewa, T., Extension of Light-Harvesting Ability of Photosynthetic Light- Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores. J. Am. Chem. Soc. 2015, 137, 13121-13129.

20. Hu, X.; Ritz, T.; Damjanović, A.; Schulten, K., Pigment Organization and Transfer of Electronic Excitation in the Photosynthetic Unit of Purple Bacteria. J. Phys. Chem. B 1997, 101, 3854-3871.

21. Alden, R. G.; Johnson, E.; Nagarajan, V.; Parson, W. W.; Law, C. J.; Cogdell, R. G., Calculations of Spectroscopic Properties of the LH2 Bacteriochlorophyll-Protein Antenna Complex from Rhodopseudomonas acidophila. J. Phys. Chem. B 1997, 101, 4667-4680.

22. Damjanović, A.; Ritz, T.; Schulten, K., Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. Phys. Rev. E 1999, 59, 3293-3311.

23. Scholes, G. D.; Gould, I. R.; Cogdell, R. J.; Fleming, G. R., Ab Initio Molecular Orbital Calculations of Electronic Couplings in the LH2 BacterialLight-Harvesting Complex of Rps. Acidophila. J. Phys. Chem. B 1999, 103, 2543-2553.

24. Linnanto, J.; Freiberg, A.; Korppi-Tommola, J., Quantum Chemical Simulations of Excited-State Absorption Spectraof Photosynthetic Bacterial Reaction Center and Antenna Complexes. J. Phys. Chem. B 2011, 115, 5536-5544.

25. van der Vegte, C. P.; Prajapati, J. D.; Kleinekathö fer, U.; Knoester, J.; Jansen, T. L. C., Atomistic Modeling of Two-Dimensional Electronic Spectra and Excited-State Dynamics for a Light Harvesting 2 Complex. J. Phys. Chem. B 2015, 119, 1302-1313.

26. Cupellini, L.; Jurinovich, S.; Campetella, M.; Caprasecca, S.; Guido, C. A.; Kelly, S. M.; Gardiner, A. T.; Cogdell, R.; Mennucci, B., An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence. J. Phys. Chem. B 2016, 120, 11348-11359.

27. Segatta, F.; Cupellini, L.; Jurinovich, S.; Mukamel, S.; Dapor, M.; Taioli, S.; Garavelli, M.; Mennucci, B., A Quantum Chemical Interpretation of Two-Dimensional Electronic Spectroscopy of Light-Harvesting Complexes. J. Am. Chem. Soc. 2017, 139, 7558-7567.

28. Li, X.; Parrish, R. M.; Liu, F.; Schumacher, S. I. L. K.; Martínez, T. J., An Ab Initio Exciton Model Including Charge-Transfer Excited States. J. Chem. Theory Comput. 2017, 13, 3493-3504.

29. Cupellini, L.; Caprasecca, S.; Guido, C. A.; Mü h, F.; Renger, T.; Mennucci, B., Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria. J. Phys. Chem. Lett. 2018, 9, 6892-6899.

30. Nottoli, M.; Jurinovich, S.; Cupellini, L.; Gardiner, A. T.; Cogdell, R.; Mennucci, B., The role of charge‑transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynth. Res. 2018, 137, 215-226.

31. Bold, B. M.; Sokolov, M.; Maity, S.; Wanko, M.; Dohmen, P. M.; Kranz, J. J.; Kleinekathöfer, U.; Höfener, S.; Elstner, M., Benchmark and performance of long-rangecorrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light- harvesting complexes. Phys. Chem. Chem. Phys. 2020, 20, 10500-10518.

32. Frenkel, J., On the Transformation of Light into Heat in Solids. II. Phys. Rev. 1931, 37, 1276-1294.

33. May, V.; Kühn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 3rd ed.; Wiley-VCH: Weinheim, 2011.

34. Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 1948, 437, 55-75.

35. Speiser, S., Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric Molecular Systems: Solution and Supersonic Jet Studies. Chem. Rev. 1996, 96, 1953-1976.

36. Chang, J. C., Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls. J. Chem. Phys. 1977, 67, 3901-3909.

37. Krueger, B. P.; Scholes, G. D.; Fleming, G. R., Calculation of Couplings and Energy- Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method. J. Phys. Chem. B 1998, 102, 5378-5386.

38. Tretiak, S.; Middleton, C.; Chernyak, V.; Mukamel, S., Exciton Hamiltonian for the Bacteriochlorophyll System in the LH2 Antenna Complex of Purple Bacteria. J. Phys. Chem. B 2000, 104, 4519-4528.

39. Hsu, C.-P.; Fleming, G. R.; Head-Gordon, M.; Head-Gordon, T., Excitation energy transfer in condensed media. J. Chem. Phys. 2001, 114, 3065-3072.

40. Iozzi, M. F.; Mennucci, B.; Tomasi, J.; Cammi, R., Excitation energy transfer (EET) between molecules in condensed matter: A novel application of the polarizable continuum model (PCM). J. Chem. Phys. 2004, 120, 7029-7040.

41. Wong, K. F.; Bagchi, B.; Rossky, P. J., Distance and Orientation Dependence of Excitation Transfer Rates in Conjugated Systems: Beyond the Förster Theory. J. Phys. Chem. A 2004, 108, 5752-5763.

42. Madjet, M. E.; Abdurahman, A.; Renger, T., Intermolecular Coulomb Couplings from Ab Initio Electrostatic Potentials: Application to Optical Transitions of Strongly Coupled Pigments in Photosynthetic Antennae and Reaction Centers. J. Phys. Chem. B 2006, 110, 17268-17281.

43. Neugebauer, J., Couplings between electronic transitions in a subsystem formulation of time-dependent density functional theory. J. Chem. Phys. 2007, 126, 134116.

44. Fückel, B.; Köhn, A.; Harding, M. E.; Diezemann, G.; Hinze, G.; Basché, T.; Gauss, J., Theoretical investigation of electronic excitation energy transfer in bichromophoric assemblies. J. Chem. Phys. 2008, 128, 074505.

45. Fink, R. F.; Pfister, J.; Zhao, H. M.; Engels, B., Assessment of quantum chemical methods and basis sets for excitation energy transfer. Chem. Phys. 2008, 346, 275-285.

46. Vura-Weis, J.; Newton, M. D.; Wasielewski, M. R.; Subotnik, J. E., Characterizing the Locality of Diabatic States for Electronic Excitation Transfer By Decomposing the Diabatic Coupling. J. Phys. Chem. C 2010, 114, 20449-20460.

47. Kawatsu, T.; Matsuda, K.; Hasegawa, J., Bridge-Mediated Excitation Energy Transfer Pathways through Protein Media: a Slater Determinant-Based Electronic Coupling Calculation Combined with Localized Molecular Orbitals. J. Phys. Chem. A 2011, 115, 10814-10822.

48. Voityuk, A. A., Estimation of Electronic Coupling for Photoinduced Charge Separation and Charge Recombination Using the Fragment Charge Difference Method. J. Phys. Chem. C 2013, 117, 2670-2675.

49. Błasiak, B.; Maj, M.; Cho, M.; Góra, R. W., Distributed Multipolar Expansion Approach to Calculation of Excitation Energy Transfer Couplings. J. Chem. Thory Comput. 2015, 11, 3259- 3266.

50. Fujimoto, K. J.; Hayashi, S., Electronic Coulombic Coupling of Excitation-Energy Transfer in Xanthorhodopsin. J. Am. Chem. Soc. 2009, 131, 14152-14153.

51. Fujimoto, K. J., Transition-density-fragment interaction approach for exciton-coupled circular dichroism spectra. J. Chem. Phys. 2010, 133, 124101.

52. Fujimoto, K. J., Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states. J. Chem. Phys. 2012, 137, 034101.

53. Fujimoto, K. J., Electronic coupling calculations with transition charges, dipoles, and quadrupoles derived from electrostatic potential fitting. J. Chem. Phys. 2014, 141, 214105.

54. Fujimoto, K. J., Theoretical Calculations of Excitation Energy Transfer. In Chemical Science of π-Electron Systems, Akasaka, T.; Osuka, A.; Fukuzumi, S.; Kandori, H.; Aso, Y., Eds. Springer: Tokyo, Japan, 2015; pp 761-777.

55. Fujimoto, K. J.; Balashov, S. P., Vibronic coupling effect on circular dichroism spectrum: Carotenoid–retinal interaction in xanthorhodopsin. J. Chem. Phys. 2017, 146, 095101.

56. Fujimoto, K. J.; Inoue, K., Excitonic coupling effect on the circular dichroism spectrum of sodium-pumping rhodopsin KR2. J. Chem. Phys. 2020, 153, 045101.

57. Fujimoto, K. J.; Kitamura, C., A theoretical study of crystallochromy: Spectral tuning of solid-state tetracenes. J. Chem. Phys. 2013, 139, 084511.

58. Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K., ONIOM: A Multilayered Integrated MO+MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2+H2 Oxidative Addition. J. Phys. Chem. 1996, 100, 19357-19363.

59. Loncharich, R. J.; Brooks, B. R.; Pastor, R. W., Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-actylananyl-N’-methylamide. Biopolymers 1992, 32, 523-535.

60. Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald--an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.

61. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.

62. Jorgensen, W. L.; Chandreskhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.

63. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696-3713.

64. Dickson, C. J.; Madej, B. D.; Skjevik, Å. A.; Betz, R. M.; Teigen, K.; Gould, I. R.; Walker, R. C., Lipid14: The Amber Lipid Force Field. J. Chem. Theory Comput. 2014, 10, 865-879.

65. Lee, C.; Yang, W.-T.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789.

66. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456-1465.

67. Wang, J.; Cieplak, P.; Kollman, P. A., How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules? J. Comput. Chem. 2000, 21, 1049-1074.

68. Chaia, J.-D.; Head-Gordon, M., Systematic optimization of long-range corrected hybrid density functionals. J. Chem. Phys. 2008, 128, 084106.

69. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H., et al. Gaussian16, Rev. C.01; Gaussian, Inc.: Wallingford, CT, 2019.

70. Case, D. A.; Ben-Shalom, I. Y.; Brozell, S. R.; Cerutti, D. S.; Cheatham, T. E., III; Cruzeiro, V. W. D.; Darden, T. A.; Duke, R. E.; Ghoreishi, D.; Giambasu, G., et al. AMBER 2019, University of California: San Francisco, CA, 2019.

71. Warshel, A.; Levitt, M., Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103, 227-249.

72. Fujimoto, K.; Hayashi, S.; Hasegawa, J.; Nakatsuji, H., Theoretical Studies on the Color- Tuning Mechanism in Retinal Proteins. J. Chem. Theory Comput. 2007, 3, 605-618.

73. Fujimoto, K.; Hasegawa, J.; Nakatsuji, H., Color Tuning Mechanism of Human Red, Green, and Blue Cone Pigments: SAC-CI Theoretical Study. Bull. Chem. Soc. Jpn. 2009, 82, 1140-1148.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る