リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「T cell receptor-engineered T cells derived from target human leukocyte antigen-DPB1-specific T cell can be a potential tool for therapy against leukemia relapse following allogeneic hematopoietic cell transplantation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

T cell receptor-engineered T cells derived from target human leukocyte antigen-DPB1-specific T cell can be a potential tool for therapy against leukemia relapse following allogeneic hematopoietic cell transplantation

Katsuyama, Naoya Kawase, Takakazu Barakat, Carolyne Mizuno, Shohei Tomita, Akihiro Ozeki, Kazutaka Nishio, Nobuhiro Sato, Yoshie Kajiya, Ryoko Shiraishi, Keiko Takahashi, Yoshiyuki Ichinohe, Tatsuo Nishikawa, Hiroyoshi Akatsuka, Yoshiki 名古屋大学

2023.11

概要

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an established treatment
for refractory hematological malignancies.1,2 Allo-HSCT is based on genetic differences between
donors and patients that form allogeneic antigens and induce various immune responses. 3-6 Infused
donor lymphocytes may lead to life-threatening graft-versus-host disease (GVHD); however, graftversus leukemia/lymphoma (GVL) can induce a strong anti-tumor effect.3,4 Although mortality and
morbidity caused by high-dose chemotherapy, infections, and organ damage have been decreased
owing to improvements in appropriate management, the survival rate after transplantation remains
at approximately 50% over the last two decades, mainly due to the unchanged rate of recurrent
malignancies, especially in patients with advanced disease.7-9 Therefore, more effective strategies
are needed to prevent relapse and establish treatment methods.10
Transplantation from Human leukocyte antigen (HLA)-A, -B, -C, -DRB1, and-DQB1-matched
unrelated donors (10 loci/10 loci) represents the first choice for patients.11 However, recent studies
showed that HLA-DPB1 antigen mismatch occurs in approximately 70% of unrelated allo-HSCT
cases, and several HLA-DPB1 mismatch combinations decrease the risk of leukemia relapse, and
may also increase the risk of GVHD.12-14 As HLA-DPB1 expression is restricted to hematopoietic
cells and to a lesser extent, inflamed non-hematopoietic tissues,15 it is unlikely that donor T cells
specific for the mismatched HLA-DP allele will induce uncontrollable severe GVHD, suggesting
that mismatched HLA-DP is a promising therapeutic target for leukemia relapse following alloHSCT. Several reports have demonstrated that CD4+ HLA-DP-restricted T cell clones isolated
from patients receiving unrelated allo-HSCT or healthy donors, exert anti-leukemic activities.15-19
Recently, chimeric antigen receptor T cells have been introduced into clinics with great success
for the treatment of relapsed and refractory CD19-positive leukemia and lymphoma as genetically
engineered T cell therapies. However, the number of promising targetable cell surface antigens is
limited, ie, in B lymphocyte malignancies.20 The other form of genetically engineered T cells is
T-cell receptor (TCR)-modified T cells; however, there have been no clinically approved products
to date. Given that TCR recognizes the major histocompatibility antigen and its bound peptides
derived from intracellular proteins, the number of targetable antigens is much higher.21,22 In this
study, by taking advantage of the features of TCR-T cells, we sought to generate CD4+ T cell
clones specific for allogeneic HLA-DP-bound antigens to treat hematological malignancies that
relapse following HLA-DP-mismatched allo-HSCT, because CD4+ cytotoxic T cells are indispensable effector T cells in cancer immunity.23 In addition, we focused on HLA-DP alleles such
as HLA-DPB1*09:01, whose frequency is relatively high in the Japanese population24 to cover
patients in this ethnic group. Finally, we demonstrated that introduction of the inducible HLA-DP
expression system could help isolate promising T cell clones with sufficient TCR affinity. ...

この論文で使われている画像

参考文献

1 Miller JS, Warren EH, van den Brink MR, et al. NCI First International Workshop on The Biology, Prevention, and Treatment of Relapse After Allogeneic Hematopoietic Stem Cell Transplantation: Report from

the Committee on the Biology Underlying Recurrence of Malignant Disease following Allogeneic HSCT:

Graft-versus-Tumor/Leukemia Reaction. Biol Blood Marrow Transplant. 2010;16(5):565–586. doi:10.1016/j.

bbmt.2010.02.005.

2 Falkenburg JH, Jedema I. Allo-reactive T cells for the treatment of hematological malignancies. Mol Oncol.

2015;9(10):1894–1903. doi:10.1016/j.molonc.2015.10.014.

3 Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T. Minor histocompatibility antigens

as targets for immunotherapy using allogeneic immune reactions. Cancer Sci. 2007;98(8):1139–1146.

doi:10.1111/j.1349-7006.2007.00521.x.

4 Wu CJ, Ritz J. Induction of tumor immunity following allogeneic stem cell transplantation. Adv Immunol.

2006;90:133–173. doi:10.1016/S0065-2776(06)90004-2.

5 Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–1561.

doi:10.1016/S0140-6736(09)60237-3.

6 Nash RA, Storb R. Graft-versus-host effect after allogeneic hematopoietic stem cell transplantation: GVHD

and GVL. Curr Opin Immunol. 1996;8(5):674–680. doi:10.1016/s0952-7915(96)80085-9.

Nagoya J. Med. Sci. 85. 779–796, 2023

794

doi:10.18999/nagjms.85.4.779

TCR-T cells for target HLA-DP antigen

7 Duval M, Klein JP, He W, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or

primary induction failure. J Clin Oncol. 2010;28(23):3730–3738. doi:10.1200/JCO.2010.28.8852.

8 Craddock C, Labopin M, Pillai S, et al. Factors predicting outcome after unrelated donor stem cell

transplantation in primary refractory acute myeloid leukaemia. Leukemia. 2011;25(5):808–813. doi:10.1038/

leu.2011.13.

9 Falkenburg JHF, Jedema I. Graft versus tumor effects and why people relapse. Hematology Am Soc Hematol

Educ Program. 2017;2017(1):693–698. doi:10.1182/asheducation-2017.1.693.

10 Loke J, Malladi R, Moss P, Craddock C. The role of allogeneic stem cell transplantation in the management

of acute myeloid leukaemia: a triumph of hope and experience. Br J Haematol. 2020;188(1):129–146.

doi:10.1111/bjh.16355.

11 Lee SJ, Klein J, Haagenson M, et al. High-resolution donor-recipient HLA matching contributes to

the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–4583. doi:10.1182/

blood-2007-06-097386.

12 Morishima Y, Kashiwase K, Matsuo K, et al. Biological significance of HLA locus matching in unrelated

donor bone marrow transplantation. Blood. 2015;125(7):1189–1197. doi:10.1182/blood-2014-10-604785.

13 Petersdorf EW, Malkki M, O’hUigin C, et al. High HLA-DP Expression and Graft-versus-Host Disease. N

Engl J Med. 2015;373(7):599–609. doi:10.1056/NEJMoa1500140.

14 Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and

opportunities. Blood. 2017;130(9):1089–1096. doi:10.1182/blood-2017-03-742346.

15 Ibisch C, Gallot G, Vivien R, et al. Recognition of leukemic blasts by HLA-DPB1-specific cytotoxic T

cell clones: a perspective for adjuvant immunotherapy post-bone marrow transplantation. Bone Marrow

Transplant. 1999;23(11):1153–1159. doi:10.1038/sj.bmt.1701768.

16 Rutten CE, van Luxemburg-Heijs SA, Griffioen M, et al. HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia. 2008;22(7):1387–1394. doi:10.1038/

leu.2008.90.

17 Herr W, Eichinger Y, Beshay J, et al. HLA-DPB1 mismatch alleles represent powerful leukemia rejection

antigens in CD4 T-cell immunotherapy after allogeneic stem-cell transplantation. Leukemia. 2017;31(2):434–

445. doi:10.1038/leu.2016.210.

18 Laghmouchi A, Hoogstraten C, van Balen P, Falkenburg JHF, Jedema I. The allogeneic HLA-DP-restricted

T-cell repertoire provoked by allogeneic dendritic cells contains T cells that show restricted recognition of

hematopoietic cells including primary malignant cells. Haematologica. 2019;104(1):197–206. doi:10.3324/

haematol.2018.193680.

19 Rutten CE, van Luxemburg-Heijs SA, Halkes CJ, et al. Patient HLA-DP-specific CD4+ T cells from HLADPB1-mismatched donor lymphocyte infusion can induce graft-versus-leukemia reactivity in the presence

or absence of graft-versus-host disease. Biol Blood Marrow Transplant. 2013;19(1):40–48. doi:10.1016/j.

bbmt.2012.07.020.

20 June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human

cancer. Science. 2018;359(6382):1361–1365. doi:10.1126/science.aar6711.

21 Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD. New Strategies in Engineering T-cell Receptor

Gene-Modified T cells to More Effectively Target Malignancies. Clin Cancer Res. 2015;21(23):5191–5197.

doi:10.1158/1078-0432.CCR-15-0860.

22 Zhang J, Wang L. The Emerging World of TCR-T Cell Trials Against Cancer: A Systematic Review. Technol

Cancer Res Treat. 2019;18:1533033819831068. doi:10.1177/1533033819831068.

23 Richardson JR, Schöllhorn A, Gouttefangeas C, Schuhmacher J. CD4+ T Cells: Multitasking Cells in the

Duty of Cancer Immunotherapy. Cancers(Basel). 2021;13(4):596. doi:10.3390/cancers13040596.

24 Gonzalez-Galarza FF, McCabe A, Santos EJMD, et al. Allele frequency net database (AFND) 2020 update:

gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res.

2020;48(D1):D783-D788. doi:10.1093/nar/gkz1029.

25 Kornbluth J, Spear B, Raab SS, Wilson DB. Evidence for the role of class I and class II HLA antigens

in the lytic function of a cloned line of human natural killer cells. J Immunol. 1985;134(2):728–735.

doi:10.4049/jimmunol.134.2.728.

26 Möller JF, Möller B, Wiedenmann B, Berg T, Schott E. CD154, a marker of antigen-specific stimulation

of CD4 T cells, is associated with response to treatment in patients with chronic HCV infection. J Viral

Hepat. 2011;18(7):e341-e349. doi:10.1111/j.1365-2893.2010.01430.x.

27 Akatsuka Y, Martin EG, Madonik A, Barsoukov AA, Hansen JA. Rapid screening of T-cell receptor (TCR)

variable gene usage by multiplex PCR: application for assessment of clonal composition. Tissue Antigens.

1999;53(2):122–134. doi:10.1034/j.1399-0039.1999.530202.x.

Nagoya J. Med. Sci. 85. 779–796, 2023

795

doi:10.18999/nagjms.85.4.779

Naoya Katsuyama et al

28 Hamana H, Shitaoka K, Kishi H, Ozawa T, Muraguchi A. A novel, rapid and efficient method of cloning

functional antigen-specific T-cell receptors from single human and mouse T-cells. Biochem Biophys Res

Commun. 2016;474(4):709–714. doi:10.1016/j.bbrc.2016.05.015.

29 Sommermeyer D, Uckert W. Minimal amino acid exchange in human TCR constant regions fosters improved

function of TCR gene-modified T cells. J Immunol. 2010;184(11):6223–6231. doi:10.4049/jimmunol.0902055.

30 Okamoto S, Mineno J, Ikeda H, et al. Improved expression and reactivity of transduced tumor-specific

TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res. 2009;69(23):9003–9011.

doi:10.1158/0008-5472.CAN-09-1450.

31 Bleakley M, Heimfeld S, Jones LA, et al. Engineering human peripheral blood stem cell grafts that are

depleted of naive T cells and retain functional pathogen-specific memory T cells. Biol Blood Marrow

Transplant. 2014;20(5):705–716. doi:10.1016/j.bbmt.2014.01.032.

32 Micouin A, Rouillard D, Bauvois B. Induction of macrophagic differentiation and cytokine secretion by IgG1

molecules in human normal monocytes and myelogenous leukemia cells. Leukemia. 1997;11(4):552–560.

doi:10.1038/sj.leu.2400602.

33 Bae J, Hideshima T, Tai YT, et al. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor

activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid

tumors. Leukemia. 2018;32(9):1932–1947. doi:10.1038/s41375-018-0062-8.

34 Suárez-Alvarez B, Rodriguez RM, Calvanese V, et al. Epigenetic mechanisms regulate MHC and antigen

processing molecules in human embryonic and induced pluripotent stem cells. PLoS One. 2010;5(4):e10192.

doi:10.1371/journal.pone.0010192.

35 Klobuch S, Hammon K, Vatter-Leising S, et al. HLA-DPB1 Reactive T Cell Receptors for Adoptive Immunotherapy in Allogeneic Stem Cell Transplantation. Cells. 2020;9(5):1264. doi:10.3390/cells9051264.

36 Stevanovic S, van Bergen CA, van Luxemburg-Heijs SA, et al. HLA class II upregulation during viral

infection leads to HLA-DP-directed graft-versus-host disease after CD4+ donor lymphocyte infusion. Blood.

2013;122(11):1963–1973. doi:10.1182/blood-2012-12-470872.

37 Khilji MS, Faridi P, Pinheiro-Machado E, et al. Defective Proinsulin Handling Modulates the MHC I

Bound Peptidome and Activates the Inflammasome in beta-Cells. Biomedicines. 2022;10(4):814. doi:10.3390/

biomedicines10040814.

38 Petersdorf EW, Bengtsson M, De Santis D, et al. Role of HLA-DP Expression in Graft-Versus-Host Disease

After Unrelated Donor Transplantation. J Clin Oncol. 2020;38(24):2712–2718. doi:10.1200/JCO.20.00265.

39 Martin PJ, Levine DM, Storer BE, Sather CL, Spellman SR, Hansen JA. Genetic associations with immunemediated outcomes after allogeneic hematopoietic cell transplantation. Blood Adv. 2022;6(8):2608–2617.

doi:10.1182/bloodadvances.2021005620.

40 Toffalori C, Zito L, Gambacorta V, et al. Immune signature drives leukemia escape and relapse after

hematopoietic cell transplantation. Nat Med. 2019;25(4):603–611. doi:10.1038/s41591-019-0400-z.

References End

Nagoya J. Med. Sci. 85. 779–796, 2023

796

doi:10.18999/nagjms.85.4.779

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る