リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Possible NK cell-mediated immune responses against iPSC-derived cells in allogeneic transplantation settings」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Possible NK cell-mediated immune responses against iPSC-derived cells in allogeneic transplantation settings

Masuda, Kyoko Kawamoto, Hiroshi 京都大学 DOI:10.1186/s41232-020-00150-7

2021

概要

In the regenerative medicine field, allogenic transplantation of regenerated tissues has been promoted because autologous transplantation setting is costly and time-consuming to prepare and therefore unsuitable for emergent treatment. To avoid a T cell-mediated immune rejection in the allogenic transplantation setting, induced pluripotent stem cells (iPSCs) derived from different HLA haplotype-homozygous (HLA-homo) donors have been prepared to be used as source of regenerated tissues. However, there still remain immunological issues, even when HLA-homo iPSCs are used. One issue is the immune response against minor histocompatibility antigens expressed on the regenerated tissues, and the other is the immune rejection mediated by NK cells. In this article, we introduce our research on NK cell reactivity against the regenerated tissues in the HLA homo-to-hetero transplantation setting. We further introduce several approaches taken by other groups that address the NK-mediated immune rejection issue.

この論文で使われている画像

関連論文

参考文献

1. Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells.

Nat Biotechnol. 2008;26:739–40.

2. Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate

integration-free human iPS cells. Nat Methods. 2011;8:409–12.

3. Taylor CJ, Peacock S, Chaudhry AN, et al. Generating an iPSC bank for HLAmatched tissue transplantation based on known donor and recipient HLA

types. Cell Stem Cell. 2012;11:147–52.

4. Karre K, Ljunggren HG, Piontek G, et al. Selective rejection of H-2-deficient

lymphoma variants suggests alternative immune defence strategy. Nature.

1986;319:675–8.

5. Suzue K, Reinherz EL, Koyasu S. Critical role of NK but not NKT cells in acute

rejection of parental bone marrow cells in F1 hybrid mice. Eur J Immunol.

2001;31(3):147–52.

6. Joncker NT, Raulet DH. Regulation of NK cell responsiveness to achieve selftolerance and maximal responses to diseased target cells. Immunol Rev.

2008;224:85–97.

7. Velardi A, Ruggeri L, Mancusi A, et al. Natural killer cell allorecognition of

missing self in allogeneic hematopoietic transplantation: a tool for

immunotherapy of leukemia. Curr Opin Immunol. 2009;21:525–30.

8. Nakamura K, Nakayama M, Kawano M, et al. NK-cell fratricide: dynamic

crosstalk between NK and cancer cells. Oncoimmunology. 2013;2:e26529.

9. Cudkowicz G, Stimpfling JH. Hybrid resistance to parental marrow grafts:

association with the K region of H-2. Science. 1964;144:1339–40.

10. Murphy WJ, Kumar V, Bennett M. Rejection of bone marrow allografts by

mice with severe combined immune deficiency (SCID). Evidence that

natural killer cells can mediate the specificity of marrow graft rejection. J

Exp Med. 1987;165:1212–7.

11. Moesta AK, Parham P. Diverse functionality among human NK cell receptors

for the C1 epitope of HLA-C: KIR2DS2, KIR2DL2, and KIR2DL3. Front

Immunol. 2012;3:336.

12. Ichise H, Nagano S, Maeda T, et al. NK cell Alloreactivity against KIR-ligandmismatched HLA-haploidentical tissue derived from HLA haplotypehomozygous iPSCs. Stem Cell Reports. 2017;9:853–67.

13. Maeda T, Nagano S, Ichise H, et al. Regeneration of CD8αβ T cells from Tcell-derived iPSC imparts potent tumor antigen-specific cytotoxicity. Cancer

Res. 2016;76:6839–50.

14. Masumoto H, Ikuno T, Takeda M, et al. Human iPS cell-engineered cardiac

tissue sheets with cardiomyocytes and vascular cells for cardiac

regeneration. Sci Rep. 2014;4:6716.

15. Vizcardo R, Masuda K, Yamada D, et al. Regeneration of human tumor

antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell

Stem Cell. 2013;12:31–6.

Page 9 of 9

16. Nagano S, Maeda T, Ichise H, et al. High frequency production of T cellderived iPSC clones capable of generating potent cytotoxic T cells. Mol Ther

Methods Clin Dev. 2020;16:126–35.

17. Kashima S, Maeda T, Masuda K, et al. Cytotoxic T lymphocytes regenerated

from iPS cells have therapeutic efficacy in a patient-derived xenograft solid

tumor model. iScience. 2020;23:100998.

18. Uehara S, Chase CM, Kitchens WH, et al. NK cells can trigger allograft

vasculopathy: the role of hybrid resistance in solid organ allografts. J

Immunol. 2005;175:3424–30.

19. Ikeda N, Kojima H, Nishikawa M, et al. Determination of HLA-A, -C, -B, -DRB1

allele and haplotype frequency in Japanese population based on family

study. Tissue Antigens. 2015;85:252–9.

20. Yawata M, Yawata N, Draghi M, et al. MHC class I-specific inhibitory

receptors and their ligands structure diverse human NK-cell repertoires

toward a balance of missing self-response. Blood. 2008;112:2369–80.

21. Deuse T, Hu X, Gravina A, et al. Hypoimmunogenic derivatives of induced

pluripotent stem cells evade immune rejection in fully immunocompetent

allogeneic recipients. Nat Biotechnol. 2019;37:252–8.

22. Gornalusse GG, Hirata RK, Funk SE, et al. HLA-E-expressing pluripotent stem

cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol.

2017;35:765–72.

23. Fauriat C, Andersson S, Bjorklund AT, et al. Estimation of the size of the

alloreactive NK cell repertoire: studies in individuals homozygous for the

group a KIR haplotype. J Immunol. 2008;181:6010–9.

24. Han X, Wang M, Duan S, et al. Generation of hypoimmunogenic human

pluripotent stem cells. Proc Natl Acad Sci U S A. 2019;116:10441–6.

25. Fu B, Zhou Y, Ni X, et al. Natural killer cells promote fetal development

through the secretion of growth-promoting factors. Immunity. 2017;47:

1100–13 e6.

26. Zhao L, Teklemariam T, Hantash BM. Heterelogous expression of mutated

HLA-G decreases immunogenicity of human embryonic stem cells and their

epidermal derivatives. Stem Cell Res. 2014;13:342–54.

27. Zhao HX, Jiang F, Zhu YJ, et al. Enhanced immunological tolerance by HLAG1 from neural progenitor cells (NPCs) derived from human embryonic

stem cells (hESCs). Cell Physiol Biochem. 2017;44:1435–44.

28. Rajagopalan S, Long EO. KIR2DL4 (CD158d): an activation receptor for HLAG. Front Immunol. 2012;3:258.

29. Xu H, Wang B, Ono M, et al. Targeted disruption of HLA genes via CRISPRCas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell.

2019;24:566–78 e7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る