リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「NASHモデルマウスにおける運動による肝内免疫細胞動態の変化とNASHの進行抑制」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

NASHモデルマウスにおける運動による肝内免疫細胞動態の変化とNASHの進行抑制

筒井, 由梨子 TSUTSUI, Yuriko ツツイ, ユリコ 九州大学

2023.11.30

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Exercise changes the intrahepatic immune cell
profile and inhibits the progression of
nonalcoholic steatohepatitis in a mouse model
筒井, 由梨子

https://hdl.handle.net/2324/7165094
出版情報:Kyushu University, 2023, 博士(医学), 課程博士
バージョン:
権利関係:Creative Commons Attribution-NonCommercial-NoDerivatives International

氏 名:

筒井 由梨子

論文名:

Exercise changes the intrahepatic immune cell profile and inhibits the
progression of nonalcoholic steatohepatitis in a mouse model
(NASHモデルマウスにおける運動による肝内免疫細胞動態の変化とNASHの進行抑
制)

区 分:



論 文 内 容 の 要 旨

【背景】非アルコール性脂肪性肝炎(NASH)は、慢性肝疾患の原因としてより一般的になっており、肝
硬変や肝細胞癌に進行する可能性もある。運動は、急性肝炎時の炎症を抑制することが報告されてい
るが、慢性肝疾患の進行に対して運動が及ぼす影響はまだ明らかになっていない。ここで、我々は
NASHモデルマウスを用いて、疾患の進行と肝内免疫細胞動態に対して運動が及ぼす影響を検討した。
【方法】マウスは2つの対照群(通常食)と2つのNASH群(西洋食+低用量の四塩化炭素を腹腔内注射)の4
群に分類した。対照群とNASH群のうちそれぞれ1群ずつを非運動群とし、残りの1群ずつを運動群とし
て、1日60分、週5日のトレッドミル運動を12週間施行した。その後、全てのマウスの肝組織形態、脂
肪肝、炎症、線維化を評価し、肝臓・脂肪組織・骨格筋における代謝や炎症に関連する遺伝子の発現
や、肝内免疫細胞の組成を解析した。
【結果】通常食のマウスと比較して、NASHマウスでは脂肪肝や炎症、線維化が亢進し、肝内の脂質生
成や炎症に関連する遺伝子の発現が上昇、かつ肝内のF4/80intCD11bhiの骨髄由来マクロファージやPD1+ CD8+ T細胞の割合が増加した。骨髄由来マクロファージやPD-1+ CD8+ T細胞の割合は、脂肪肝や炎
症、線維化と正の相関関係にあった。運動は、NASHに起因する脂肪肝や炎症、線維化を抑制し、肝内
の代謝関連遺伝子や炎症性サイトカインの発現を変化させ、更に骨髄由来マクロファージやPD-1+
CD8+ T細胞の蓄積をも抑制した。加えて、運動によって筋肉における発現が上昇するIL-15を欠損させ
ると、NASHの病態が進行することを示した。
【結論】NASHモデルマウスにおいて、運動は肝内の免疫細胞動態を変化させ、病態進行を抑制させ
た。

この論文で使われている画像

参考文献

F I G U R E 8 Working model of exercise effects in NASH model. In

this NASH mouse model, liver steatosis, liver injury, and fibrosis were

progressed. Exercise changed intrahepatic immune cell profile, and

suppressed liver steatosis, liver injury, and fibrosis, and that the

beneficial effects correlated with reductions in intrahepatic BMDMs

(F4/80intCD11bhi macrophage) and PD-1+ CD8+ T cells. Exercise

mice had increased IL-15 expression in muscle and fatty liver and liver

injury were exacerbated in IL-15 KO mice with NASH, suggesting that

IL-15 may be involved in the inhibitory effect of exercise on NASH

progression. Abbreviations: BMDMs, bone marrow-derived macrophage; KO, knockout; PD-1, programmed death receptor-1.

muscle-specific but systemic IL-15 KO mice, so further

investigation is needed to determine the extent to which

muscle-derived IL-15 contributes to the pathogenesis

of NASH.

In summary, the results of our study show that

exercise ameliorated hepatic steatosis, inflammation,

and fibrosis in a mouse model of NASH, and that the

beneficial effects correlated with reductions in intrahepatic BMDMs and PD-1+ CD8+ T cells. Therefore,

one of the many beneficial effects of exercise on NASH

pathogenesis may be an impact on the intrahepatic

immune cell profile. In addition, it is possible that IL-15

produced by exercise is involved in the inhibition of

NASH progression by exercise (Figure 8).

ACKNOWLEDGMENTS

The authors thank Chizu Tokoro, Hiromi Tanikawa,

Hiroko Nagai, and Tomomi Oishi for technical assistance. The authors thank Anne M. O’Rourke, PhD, from

Edanz (http://jp.edanz.com/ac) for editing a draft of this

manuscript.

F U N D I N G IN F O R M A T I O N

This research was supported by The Japan Agency

for Medical Research and Development (AMED,

21fk0210094) and a Grant-in-Aid for Research from

the National Center for Global Health and Medicine

(20A3001).

1. Parlati L, Régnier M, Guillou H, Postic C. New targets for NAFLD.

JHEP Rep. 2021;3:100346.

2. Rinella M, Charlton M. The globalization of nonalcoholic fatty

liver disease: prevalence and impact on world health. Hepatology. 2016;64:19–22.

3. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al. Prevalence,

incidence, and outcome of non-alcoholic fatty liver disease in

Asia, 1999–2019: A systematic review and meta-analysis.

Lancet Gastroenterol Hepatol. 2019;4:389–98.

4. Guarino M, Kumar P, Felser A, Terracciano LM, Guixé-Muntet S,

Humar B, et al. Exercise attenuates the transition from fatty liver

to steatohepatitis and reduces tumor formation in mice. Cancers

(Basel). 2020;12:1407.

5. Schwabe RF, Tabas I, Pajvani UB. Mechanisms of fibrosis

development in nonalcoholic steatohepatitis. Gastroenterology.

2020;158:1913–28.

6. Tokushige K, Ikejima K, Ono M, Eguchi Y, Kamada Y, Itoh Y,

et al. Evidence-based clinical practice guidelines for nonalcoholic

fatty liver disease/nonalcoholic steatohepatitis 2020. Hepatol

Res. 2021;51:1013–25.

7. Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago

T, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver

disease: a systematic review. J Hepatol. 2017;66:142–52.

8. Lesnak JB, Fahrion A, Helton A, Rasmussen L, Andrew M,

Cunard S, et al. Resistance training protects against muscle pain

through activation of androgen receptors in male and female

mice. Pain. 2022;163:1879–91.

9. Koo BK, Kim D, Joo SK, Kim JH, Chang MS, Kim BG, et al.

Sarcopenia is an independent risk factor for nonalcoholic steatohepatitis and significant fibrosis. J Hepatol. 2017;

66:123–31.

10. Huber Y, Gehrke N, Biedenbach J, Helmig S, Simon P, Straub

BK, et al. Voluntary distance running prevents TNF-mediated

liver injury in mice through alterations of the intrahepatic immune

milieu. Cell Death Dis. 2017;8:e2893.

11. Yazdani HO, Kaltenmeier C, Morder K, Moon J, Traczek M,

Loughran P, et al. Exercise training decreases hepatic injury and

metastases through changes in immune response to liver

ischemia/reperfusion in mice. Hepatology. 2021;73:2494–509.

12. Peng H, Wang Q, Lou T, Qin J, Jung S, Shetty V, et al. Myokine

mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat Commun. 2017;8:

1493.

13. Remmerie A, Martens L, Thoné T, Castoldi A, Seurinck R, Pavie

B, et al. Osteopontin expression identifies a subset of recruited

macrophages distinct from Kupffer cells in the fatty liver.

Immunity. 2020;53:641–57 e14.

14. Tran S, Baba I, Poupel L, Dussaud S, Moreau M, Gélineau A,

et al. Impaired Kupffer cell self-renewal alters the liver response

to lipid overload during non-alcoholic steatohepatitis. Immunity.

2020;53:627–40 e5.

15. Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate

immunity and inflammation in NAFLD/NASH. Dig Dis Sci.

2016;61:1294–303.

16. Wang L, Sun P, Wu Y, Wang L. Metabolic tissue-resident CD8(+)

T cells: a key player in obesity-related diseases. Obes Rev. 2021;

22:e13133.

EXERCISE INHIBITS THE PROGRESSION OF NASH

Downloaded from http://journals.lww.com/hepcomm by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX

1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC1y0abggQZXdgGj2MwlZLeI= on 10/26/2023

17. Dudek M, Pfister D, Donakonda S, Filpe P, Schneider A,

Laschinger M, et al. Auto-aggressive CXCR6(+) CD8 T cells

cause liver immune pathology in NASH. Nature. 2021;592:444–9.

18. Pfister D, Núñez NG, Pinyol R, Govaere O, Pinter M,

Szydlowska M, et al. NASH limits anti-tumour surveillance in

immunotherapy-treated HCC. Nature. 2021;592:450–6.

19. Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S,

et al. A simple diet- and chemical-induced murine NASH model

with rapid progression of steatohepatitis, fibrosis and liver

cancer. J Hepatol. 2018;69:385–95.

20. Badmus OO, Hillhouse SA, Anderson CD, Hinds TD, Stec DE.

Molecular mechanisms of metabolic associated fatty liver

disease (MAFLD): Functional analysis of lipid metabolism

pathways. Clin Sci (Lond). 2022;136:1347–66.

21. Binas B, Danneberg H, McWhir J, Mullins L, Clark AJ. Requirement for the heart-type fatty acid binding protein in cardiac fatty

acid utilization. FASEB J. 1999;13:805–12.

22. Fang W, Deng Z, Benadjaoud F, Yang C, Shi GP. Cathepsin B

deficiency ameliorates liver lipid deposition, inflammatory cell

infiltration, and fibrosis after diet-induced nonalcoholic steatohepatitis. Transl Res. 2020;222:28–40.

23. Jiao J, Ooka K, Fey H, Fiel MI, Rahmman AH, Kojima K, et al.

Interleukin-15 receptor alpha on hepatic stellate cells regulates

hepatic fibrogenesis in mice. J Hepatol. 2016;65:344–53.

24. Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis

pathogenesis: sublethal hepatocyte injury as a driver of liver

inflammation. Gut. 2018;67:963–72.

25. Kazankov K, Jørgensen SMD, Thomsen KL, Møller HJ, Vilstrup

H, George J, et al. The role of macrophages in nonalcoholic fatty

liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol. 2019;16:145–59.

26. Pan J, Ou Z, Cai C, Li P, Gong J, Ruan XZ, et al. Fatty acid

activates NLRP3 inflammasomes in mouse Kupffer cells through

mitochondrial DNA release. Cell Immunol. 2018;332:111–20.

27. Kim KH, Lee MS. Pathogenesis of nonalcoholic steatohepatitis

and hormone-based therapeutic approaches. Front Endocrinol

(Lausanne). 2018;9:485.

13

28. Yoo SZ, No MH, Heo JW, Park DH, Kang JH, Kim SH, et al. Role

of exercise in age-related sarcopenia. J Exerc Rehabil. 2018;14:

551–8.

29. Kawanishi N, Yano H, Mizokami T, Takahashi M, Oyanagi E,

Suzuki K. Exercise training attenuates hepatic inflammation,

fibrosis and macrophage infiltration during diet induced-obesity in

mice. Brain Behav Immun. 2012;26:931–41.

30. Fredrickson G, Barrow F, Dietsche K, Parthiban P, Khan S, Robert

S, et al. Exercise of high intensity ameliorates hepatic inflammation

and the progression of NASH. Mol Metab. 2021;53:101270.

31. Piccirillo R. Exercise-induced myokines with therapeutic potential for muscle wasting. Front Physiol. 2019;10:287.

32. Molanouri Shamsi M, Hassan ZM, Quinn LS, Gharakhanlou R,

Baghersad L, Mahdavi M. Time course of IL-15 expression

after acute resistance exercise in trained rats: Effect of

diabetes and skeletal muscle phenotype. Endocrine. 2015;49:

396–403.

33. Badolato R, Ponzi AN, Millesimo M, Notarangelo LD, Musso T.

Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic

protein 1 production in human monocytes. Blood. 1997;90:

2804–9.

34. Nandi M, Moyo MM, Orkhis S, Mobulakani JMF, Limoges MA,

Rexhepi F, et al. IL-15Ralpha-independent IL-15 signaling in

non-NK cell-derived IFNgamma driven control of Listeria monocytogenes. Front Immunol. 2021;12:793918.

How to cite this article: Tsutsui Y, Mori T,

Yoshio S, Sato M, Sakata T, Yoshida Y, et al.

Exercise changes the intrahepatic immune cell

profile and inhibits the progression of nonalcoholic

steatohepatitis in a mouse model. Hepatol Commun. 2023;7:e0236. https://doi.org/10.1097/

HC9.0000000000000236

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る