リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stage-number dependence of intercalated species for fluorosilicate graphite intercalation compounds: pentafluorosilicate vs. hexafluorosilicate」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stage-number dependence of intercalated species for fluorosilicate graphite intercalation compounds: pentafluorosilicate vs. hexafluorosilicate

Yamamoto, Hiroki Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1016/j.jfluchem.2020.109714

2021.02

概要

Most intercalated ions ever reported for graphite intercalation compounds (GICs) are singly charged, and the number of reports on GICs with doubly charged ions is limited. For fluorosilicate complex anions, only the intercalation of SiF₅⁻ was reported as stage-2 GICs, although SiF₆²⁻ is more commonly known in inorganic compounds. In the present study, chemical states of fluorosilicate GICs (SiFy-GICs) are investigated along with the change in stage numbers. Syntheses of SiFy-GICs at various stage numbers (the mixtures of stage-5 and -4, stage-4 and -3, stage-3 and -2, and stage-3 and -2) clarify that SiFy-GICs at a low stage number have a larger gallery height than those at higher stage numbers. In addition, reactions of SiFy-GICs with PF₅ formed PF₆-GICs with large weight increase and stage-number decrease, which cannot be explained by the substitution of SiF₄ with PF₅ to intercalate PF₆⁻. The model that SiF₆²⁻ and SiF₅⁻ are present in GICs at high and low stage numbers, respectively (SiF₆²⁻ for stage-n (n ≥ 3) and SiF₅− for stage-2), can explain this phenomenon, suggesting intercalation of SiF₆²⁻ into graphite for the first time and stage-number dependency of intercalated species for fluorosilicate GICs.

この論文で使われている画像

参考文献

[1] M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys.

30(2) (1981) 139-326.

[2] M. Inagaki, Applications of graphite intercalation compounds, J. Mater. Res. 4(6)

(1989) 1560-1568.

[3] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation

between surface chemistry and performance of graphite negative electrodes for Li ion

batteries, Electrochim. Acta 45(1) (1999) 67-86.

[4] S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of

understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and

its relationship to formation cycling, Carbon 105 (2016) 52-76.

[5] A. Celzard, J.F. Marêché, G. Furdin, Modelling of exfoliated graphite, Prog. Mater

23

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Sci. 50(1) (2005) 93-179.

[6]

K.

Matsumoto,

D.

Minori,

K.

Takagi,

R.

Hagiwara,

Expansion

of

tetrachloroaluminate-graphite intercalation compound by reaction with anhydrous

hydrogen fluoride, Carbon 67 (2014) 434-439.

[7] G.M.T. Foley, C. Zeller, E.R. Falardeau, F.L. Vogel, Room temperature electrical

conductivity of a highly two dimensional synthetic metal: AsF5-graphite, Solid State

Commun. 24(5) (1977) 371-375.

[8] T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Superconductivity in

the intercalated graphite compounds C6Yb and C6Ca, Nat. Phys. 1(1) (2005) 39-41.

[9] K. Beltrop, P. Meister, S. Klein, A. Heckmann, M. Grünebaum, H.-D. Wiemhöfer, M.

Winter, T. Placke, Does Size really Matter? New Insights into the Intercalation Behavior

of Anions into a Graphite-Based Positive Electrode for Dual-Ion Batteries, Electrochim.

Acta 209 (2016) 44-55.

[10] M. Zhang, X. Song, X. Ou, Y. Tang, Rechargeable batteries based on anion

intercalation graphite cathodes, Energy Storage Mater. 16 (2019) 65-84.

[11] Y. Kondo, Y. Miyahara, T. Fukutsuka, K. Miyazaki, T. Abe, Electrochemical

intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions,

Electrochem. Commun. 100 (2019) 26-29.

[12] J. Jegoudez, C. Mazieres, R. Setton, Behaviour of the binary graphite intercalation

compounds KC8 and KC24 towards a set of sample organic molecules, Synth. Met. 7(1)

(1983) 85-91.

[13] T. Abe, N. Kawabata, Y. Mizutani, M. Inaba, Z. Ogumi, Correlation Between

Cointercalation of Solvents and Electrochemical Intercalation of Lithium into Graphite

in Propylene Carbonate Solution, J. Electrochem. Soc. 150(3) (2003) A257.

24

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[14] G.H. Wrodnigg, Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with

Graphitic Anodes, J. Electrochem. Soc. 146(2) (1999) 470.

[15] Y. Yacoby, The measurement of intercalant vibrations using Raman and infrared

spectroscopies, Synth. Met. 34(1) (1989) 437-442.

[16] F. Okino, S. Kawasaki, H. Touhara, Preparation and properties of graphite

hexafluoroarsenates CxAsF6 --preparation of stage-2 C28AsF6 by the reaction of stage-1

C14AsF6 with graphite, Mol. Cryst. Liq. Cryst. 387(1) (2002) 185-189.

[17] W. Rüdorff, U. Hofmann, Über Graphitsalze, Z. Anorg. Allg. Chem. 238(1) (1938)

1-50.

[18] N. Daumas and A. Hérold, Notes des Membres et Correspontants et Notes

Présentéesou Transmises par Leurs Soins, C. R. Acad. Sci. Ser. C., 268 (1969) 373-375.

[19] E.M. Gavilán-Arriazu, O.A. Pinto, B.A. López de Mishima, D.E. Barraco, O.A.

Oviedo, E.P.M. Leiva, The kinetic origin of the Daumas-Hérold model for the Liion/graphite intercalation system, Electrochem. Commun. 93 (2018) 133-137.

[20] E.M. Gavilán-Arriazu, M.P. Mercer, O.A. Pinto, O.A. Oviedo, D.E. Barraco, H.E.

Hoster, E.P.M. Leiva, Effect of Temperature on The Kinetics of Electrochemical Insertion

of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo, J. Electrochem. Soc.

167(1) (2020) 013533.

[21] M.Z. Bazant, Theory of Chemical Kinetics and Charge Transfer based on

Nonequilibrium Thermodynamics, Acc. Chem. Res. 46(5) (2013) 1144-1160.

[22] M. Chandesris, D. Caliste, D. Jamet, P. Pochet, Thermodynamics and Related

Kinetics of Staging in Intercalation Compounds, J. Phys. Chem. C 123(38) (2019) 2371123720.

[23] Y. Gotoh, K. Tamada, N. Akuzawa, M. Fujishige, K. Takeuchi, M. Endo, R.

25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Matsumoto, Y. Soneda, T. Takeichi, Preparation of air-stable and highly conductive

potassium-intercalated graphite sheet, J. Phys. Chem. Solids 74(10) (2013) 1482-1486.

[24] Y. Hattori, M. Kurihara, S. Kawasaki, F. Okino, H. Touhara, Syntheses of tin and

lead fluoride graphite intercalation compounds and the phase transition of the tin fluoride

compound, Synth. Met. 74(1) (1995) 89-93.

[25] E.M. McCarron, Y.J. Grannec, N. Bartlett, Fluorogermanium(IV) salts of graphite.

A system in equilibrium with elemental fluorine, J. Chem. Soc., Chem. Commun. (19)

(1980) 890-891.

[26] H. Touhara, K. Kadono, H. Imoto, N. Watanabe, A. Tressaud, J. Grannec, Some novel

graphite intercalation compounds with involatile fluorides: Intercalation mechanism and

in-plane electrical conductivity, Synth. Met. 18(1) (1987) 549-554.

[27] L. Fournes, T. Roisnel, J. Grannec, A. Tressaud, P. Hagenmuller, H. Imoto, H.

Touhara, Structural investigation and 119Sn Mössbauer study of graphiteSnF4 intercalation

compound, Mater. Res. Bull. 25(1) (1990) 79-87.

[28] G.L. Rosenthal, T.E. Mallouk, N. Bartlett, Intercalation of graphite by silicon

tetrafluoride and fluorine to yield a second-stage salt C24SiF5, Synth. Met. 9(4) (1984)

433-440.

[29] G. Schmuelling, T. Placke, R. Kloepsch, O. Fromm, H.-W. Meyer, S. Passerini, M.

Winter,

X-ray

diffraction

studies

of

the

electrochemical

intercalation

of

bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells, J. Power

Sources 239 (2013) 563-571.

[30]

X.

Zhang,

N.

Sukpirom,

M.M.

Lerner,

Graphite

intercalation

of

bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl

substituents, Mater. Res. Bull. 34(3) (1999) 363-372.

26

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

[31] D. Billaud, F.X. Henry, M. Lelaurain, P. Willmann, Revisited structures of dense and

dilute stage II lithium-graphite intercalation compounds, J. Phys. Chem. Solids 57(6)

(1996) 775-781.

[32] F. Okino, N. Bartlett, Hexafluoroarsenates of graphite from its interaction with AsF5,

AsF5 + F2, and O2AsF6, and the structure of C14AsF6, J. Chem. Soc., Dalton Trans. (14)

(1993) 2081-2090.

[33] D. Schomburg, R. Krebs, Structural chemistry of pentacoordinated silicon.

Molecular structures of the pentafluorosilicate anion and the diphenyltrifluorosilicate

anion, Inorg. Chem. 23(10) (1984) 1378-1381.

[34] R.P. Sharma, R. Bala, R. Sharma, U. Rychlewska, B. Warżajtis, First X-ray structure

of hexaamminecobalt(III) salt with complex fluoroanion: Synthesis and characterization

of [Co(NH3)6]X·SiF6·nH2O, where X=Cl, Br, I and NO3 and crystal structure of

[Co(NH3)6]Cl·SiF6·2H2O, J. Fluorine Chem. 126(6) (2005) 967-975.

[35] H. Selig, A.J. Leffler, The 31P Resonance of PF6– and Related Subspecies Intercalated

in Graphite as a Function of Temperature, Inorg. Chem. 32(4) (1993) 490-490.

[36] K. Matsumoto, R. Hagiwara, Elimination of AsF3 from anhydrous HF using

AgFAsF6 as a mediator, J. Fluorine Chem. 131(7) (2010) 805-808.

27

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る