リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Large anomalous Hall effect and unusual domain switching in an orthorhombic antiferromagnetic material NbMnP」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Large anomalous Hall effect and unusual domain switching in an orthorhombic antiferromagnetic material NbMnP

Kotegawa, Hisashi Kuwata, Yoshiki Vu, Thi Ngoc Huyen Arai, Yuki Tou, Hideki Matsuda, Masaaki Takeda, Keiki Sugawara, Hitoshi Suzuki, Michi-To 神戸大学

2023.10.10

概要

Specific antiferromagnetic (AF) spin configurations generate large anomalous Hall effects (AHEs) even at zero magnetic field through nonvanishing Berry curvature in momentum space. In addition to restrictions on AF structures, suitable control of AF domains is essential to observe this effect without cancellations among its domains; therefore, compatible materials remain limited. Here we show that an orthorhombic noncollinear AF material, NbMnP, acquired AF structure-based AHE and controllability of the AF domains. Theoretical calculations indicated that a large Hall conductivity of ~230 Ω⁻¹cm⁻¹ originated from the AF structure of NbMnP. Symmetry considerations explained the production of a small net magnetization, whose anisotropy enabled the generation and cancellation of the Hall responses using magnetic fields in different directions. Finally, asymmetric hysteresis in NbMnP shows potential for the development of controllability of responses in AF materials.

この論文で使われている画像

参考文献

Fig. 5 Asymmetric hysteresis appearing after FC in NbMnP.

Hysteresis loops of ρzy at 10 K after different cooling processes;

a ZFC, b FC under + 0.3 T, and c FC under − 0.3 T. The numbers

indicate the order of field sweeps. The arrows of “start” show the

sweeping direction from the initial position. Asymmetric hysteresis

appeared after FC, reminiscent of the exchange bias.

(GGA) in the parametrization of Perdew, Burke, and Ernzerhof33

was used for the exchange-correlation functional, and the

pseudopotentials in the projector augmented-wave method34,35

were generated by PSLIBRARY36. The lattice constants

a = 6.1661 Å, b = 3.5325 Å, and c = 7.2199 Å from previous

experiments at 9 K19 were used. Starting from the experiment

atomic positions, until residual forces < 0.01 eV/Å were reached,

the atomic positions were fully relaxed. Next, we chose kinetic

cutoff energies of 50 and 400 Ry as the plane-wave basis set and

charge density, respectively. A k mesh of 9 × 15 × 9 had sampled

the first BZ with a Methfessel-Paxton smearing width of 0.005 Ry

to get the Fermi level. We used the PAOFLOW package37,38 to

estimate AHC. A 18 × 30 × 18 Monkhorst-Pack k-point grid

generated a tight-binding set of pseudo-atomic orbitals for

subsequent AHC calculations. Wannier9039 plotted the Berry

curvature in the BZ. The 4d and 5s orbitals of Nb, the 3d and 4s

orbitals of Mn, and the 3s and 3p of P were included for the

Wannier interpolation scheme using Wannier90 to construct

realistic tight-binding models from the first-principles band

structures40.

The AHC was calculated using the Kubo formula40.

σ αβ ¼ 

e2

dk X

ð2πÞ3

f ½εn ðkÞ  μΩn;αβ ðkÞ;

npj Quantum Materials (2023) 56

(1)

1. Karplus, R. & Luttinger, J. M. Hall Effect in Ferromagnetics. Phys. Rev. 95, 1154

(1954).

2. Jungwirth, T. et al. Anomalous Hall Effect in Ferromagnetic Semiconductors. Phys.

Rev. Lett. 88, 207208 (2002).

3. Nagaosa, N. et al. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

4. Chen, H. et al. Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

5. Kűber, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall

effect. EPL 108, 67001 (2014).

6. Nakatsuji, S. et al. Large anomalous Hall effect in a non-collinear antiferromagnet

at room temperature. Nature 527, 212 (2015).

7. Kiyohara, N. et al. Giant Anomalous Hall Effect in the Chiral Antiferromagnet

Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

8. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry

curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870

(2016).

9. Li, X. et al. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: Berry Curvature

and Entropy Flow. Phys. Rev. Lett. 119, 056601 (2017).

10. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral

antiferromagnet. Nat. Phys. 13, 1085 (2017).

11. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photo 12, 73 (2018).

12. Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a noncollinear antiferromagnet. Nature 565, 627 (2019).

13. Suzuki, M.-T. et al. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B. 95, 094406 (2017).

14. Šmejcal, L. et al. Crystal time-reversal symmetry breaking and spontaneous Hall

effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

15. Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

16. Akiba, K. et al. Anomalous Hall effect triggered by pressure-induced magnetic

phase transition in α-Mn. Phys. Rev. Reser. 2, 043090 (2020).

17. Park, P. et al. Field-tunable toroidal moment and anomalous Hall effect in noncollinear antiferromagnetic Weyl semimetal Co1/3TaS2. npj Quantum Mater. 7, 42

(2022).

18. Gonzalez Betancourt, R. D. et al. Spontaneous Anomalous Hall Effect Arising from

an Unconventional Compensated Magnetic Phase in a Semiconductor. Phys. Rev.

Lett. 130, 036702 (2023).

19. Matsuda, M. et al. Noncollinear spin structure with weak ferromagnetism in

NbMnP. Phys. Rev. B. 104, 174413 (2021).

20. Zhao, J. et al. Synthesis and Physical Properties of NbMnP Single Crystals. Magnetism 2, 179 (2022).

21. Lomnitskaya, Y. F. et al. Interaction du niobium et du phosphore avec le manganèse et le cuivre. Zh. Neorganicheskoi Khimii 33, 734 (1988).

22. Momma, K. & Izumi, F. An integrated three-dimensional visualization system

VESTA using wxWidgets. Comm. Crystallogr. Comput., IUCr Newslett. 7, 106 (2006).

23. Huyen, V. T. N. et al. Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt).

Phys. Rev. B. 100, 094426 (2019).

Published in partnership with Nanjing University

H. Kotegawa et al.

24. Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism.

Phys. Rev. 120, 91 (1960).

25. Meiklejohn, W. H. & Bean, C. P. New Magnetic Anisotropy. Phys. Rev. 105, 904

(1957).

26. Nogués, J. & Schller, I. K. Exchange bias. J. Mag. Mag. Mat. 192, 203 (1999).

27. Berkowitz, A. E. & Takano, K. Exchange anisotropy-a review. J. Mag. Mat. Mat. 200,

552 (1999).

28. Hayami, S. et al. Toroidal order in metals without local inversion symmetry. Phys.

Rev. B. 90, 024432 (2014).

29. Saito, H. et al. Evidence of a New Current-Induced Magnetoelectric Effect in a

Toroidal Magnetic Ordered State of UNi4B. J. Phys. Soc. Jpn. 87, 033702 (2018).

30. Ota, K. et al. Zero-field current-induced Hall effect in ferrotoroidic metal.

arXiv:2205.05555 (2022).

31. Watanabe, H. & Yanase, Y. Symmetry analysis of current-induced switching of

antiferromagnets. Phys. Rev. B. 98, 220412(R) (2018).

32. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

33. Perdew, J. P. et al. Generalized Gradient Approximation Made Simple. Phys. Rev.

Lett. 77, 3865 (1996).

34. Blóchl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953 (1994).

35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector

augmented-wave method. Phys. Rev. B. 59, 1758 (1999).

36. Corso, A. D. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 95,

337 (2014).

37. Naredelli, M. B. et al. PAOFLOW: A utility to construct and operate on ab initio

Hamiltonians from the projections of electronic wavefunctions on atomic orbital

bases, including characterization of topological materials. Comput. Mater. Sci.

143, 462 (2018).

38. Cerasoli, F. T. et al. Advanced modeling of materials with PAOFLOW 2.0: New

features and software design. Comput. Mater. Sci. 200, 110828 (2021).

39. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J.

Phys.: Condens. Matter 32, 165902 (2020).

40. Wang, X. et al. Ab initio calculation of the anomalous Hall conductivity by

Wannier interpolation. Phys. Rev. B 74, 195118 (2006).

ACKNOWLEDGEMENTS

We thank Hisatomo Harima and Youichi Yanase for valuable discussions and

comments. This work was supported by JSPS KAKENHI Grant Nos. 18H04320,

18H04321, 19H01842, 21H01789, 21H04437, 21K03446, and 23H04871, Iketani

Science and Technology Foundation, Hyogo Science and Technology Association,

and The Murata Science Foundation. A part of the numerical calculation was

performed in MASAMUNE-IMR of the Center for Computational Materials Science,

Institute for Materials Research, Tohoku University.

Published in partnership with Nanjing University

AUTHOR CONTRIBUTIONS

H.K. conceived of and designed the study. H.K., Y.K, and H.S. synthesized the single

crystal. K.T. performed the single-crystal X-ray diffraction measurements. H.K., Y.A.,

and H.T. performed the Hall resistivity measurements. V.T.N.H. and M.T.S. calculated

the Berry curvature and AHC, and provided theoretical input for the interpretation

of the results. M.M. provided information about the magnetic symmetry obtained

from the neutron scattering experiments. H.K. wrote the paper with assistance from

V.T.N.H. and M.T.S.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41535-023-00587-2.

Correspondence and requests for materials should be addressed to Hisashi

Kotegawa.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit http://

creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

npj Quantum Materials (2023) 56

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る