リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「光アンプアシスト法による光導波路型キャビティリングダウン分光法に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

光アンプアシスト法による光導波路型キャビティリングダウン分光法に関する研究

李, 雯穎 LI, WENYING リ, ウェンイン 九州大学

2020.09.25

概要

Population aging problem has become one of the significant social problem. Because of this problem, the demand of daily and easy health-check system for elder people is considered to be important. Especially home-based health monitor is desired. Breath sensing is available for the daily and easy health check because exhaled breath contains a lot kinds of disease markers. People only need breathing-out toward the sensor. The density of each disease marker in breath is analyzed at the time.

For home-use, breath sensor based on infrared absorption spectroscopy has the possibility to sense several kinds of gases at the same time. This is because each gas has its own eigen absorption peak in wavelength. For sensing ppm-order gas component in breath by using infrared absorption, an extremely long optical sensing path of several km is needed for sufficient light absorption (typically 3 dB). To achieve the effectively long length sensing path (corresponding km order) within a cavity, CRDS (cavity ring-down spectroscopy) has been proposed. One issue of the CRDS system as home-use sensor is its large size.

We have proposed breath sensor utilizing optical waveguide as the optical path for infrared absorption based on CRDS. This is because waveguide is capable for integrating several meter optical paths in a compact area (1 cm2). One problem is the waveguide propagation loss. Huge amount of loss decreases the sensing light intensity. As most of the sensing light intensity is reduced due to the propagation loss, ppm-order breath sensing becomes hard to be realized. As a solution, we have proposed amplifier-assisted CRDS to compensate the propagation loss. For hand-held breath sensor, SOA (semiconductor optical amplifier) is a candidate due to its capability of integration. To verify the effectiveness of the amplifier-assisted CRDS, we use an EDFA (Erbium-doped fiber amplifier) instead of the SOA inside CRDS system in this work. When EDFA is at a high pumping condition, ASE (amplified spontaneous emission) loops inside CRDS system and be amplified in the EDFA. Then, it starts self-lasing at a wavelength different from sensing light. Once self-lasing happens, sensing light looses the gain from EDFA. This is because most of the gain is attributed to lasing wavelength. We have proposed polarization direction control scheme to suspend self-lasing by weakening the coherency condition. The coherency is a fundamental requirement of making oscillation in cavity (namely, ring-cavity here) in general. The result showed that the self-lasing intensity was suspended, and the gain was improved to 24 dB from 14 dB at the sensing light wavelength.

Whereas the self-lasing issue has been improved, there is still an important issue in the amplifier-assisted CRDS system. The amplifier noise which exists at sensing light wavelength is hardly eliminated. In ppm-order gas sensing, the amplifier noise loops inside the system with sensing light for more than 1,000 times. The significant accumulated noise intensity may surpass the sensing light intensity and prevent ppm-order breath sensing. Hence, the accumulated noise intensity influences the sensing ability of amplifier-assisted CRDS system directly. In this work, to evaluate the lowest gas sensing concentration of amplifier-assisted waveguide CRDS, we calculated the accumulated amplifier noise intensity at ppm-order gas sensing condition. Then we estimated the necessary injection light intensity for ppm-order gas sensing under the influence of the amplifier noise. The estimated results showed several kinds of ppm-order gases (CO2, CH4, NH3, and CH3COCH3) are sensing-available by using the injection light intensity below 10 mW when the criteria level is set as 0.9. Meanwhile, the actual 3% CO2 sensing was also demonstrated experimentally to confirm the effectiveness of this proposal shown in this thesis.

この論文で使われている画像

参考文献

[1] World Health Organization, “Global health and ageing”, pp. 2-4 (2011).

[2] United Nations, Ageing issues: https://www.un.org/en/sections/issues-depth/ageing/.

[3] S. Ogura, and M. M. Jakovljevic, “Editorial: Global population aging- Health care, social and economic consequences”, Frontiers in public health, 6, pp. 335 (2018).

[4] C. Zhao, D. D. Yu, K. Kang, Y. Liu, S. Q. Li, Z. Wang, H. Ji, B. C. Zhao, L. L. Ji, X. P. Leng, and J. W. Tian, “Role of contrast-enhanced ultrasound sonography in the medical diagnostics of the disease activity in patients with Takayasu arteritis”, IEEE Access, 7, pp. 23240-23248 (2019).

[5] W. J. Manning, D. J. Atkinson, W. Grossman, S. Pauling, and R. R. Edelman, “First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease”, Journal of the American College of Cardiology, 18 (4), pp. 959-965 (1991).

[6] G. H. Han, X. B. Liu, F. F. Han, I. N. T. Santika, Y. F. Zhao, X. M. Zhao, and C. W. Zhou, “The LISS – A public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education”, IEEE Transactions on Biomedical Engineering, 62 (2), pp. 648-656 (2015).

[7] R. E. Gelder, C. Y. Nio, J. Florie, J. F. Bartelsman, P. Snel, S. W. Jager, S. J. Deventer, J. S. Lameris, P. M. M. Boossuyt, and J. Stoker, “Computed tomographic colonography compared with colonoscopy in patients at increased risk for colorectal cancer”, Gastroenterology, 127(1), pp. 41-48 (2004).

[8] C. A. Mair, A. R. Quinones, and M. A. Pasha, “Care preferences among middle-aged and older adults with chronic disease in Europe: individual health care needs and national health care infrastructure”, The Gerontologist, 56 (4), pp.687-701 (2016).

[9] M. Velikova, R. L. Smeets, J. T. Scheltinga, P. J. F. Lucas, and M. Spaanderman, “Smartphone-based analysis of biochemical tests for health monitoring support at home”, Healthcare Technology Letters, 1 (3), pp. 92-97 (2014).

[10]S. Tanaka, K. Motoi, M. Nogawa, T. Yamakoshi, and K. I. Yamakoshi, “Feasibility study of a urine glucose level monitor for home healthcare using near infrared spectroscopy”, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6001-6003 (2008).

[11]A. E. Burke, K. M. Thaler, M. Geva, and Y. Adiri, “Feasibility and acceptability of home use of a smartphone-based urine testing application among women in prenatal care”, American Journal of Obstetrics & Gynecology”, 221 (5), pp. 527-528 (2019).

[12]X. W. Huang, Y. B. Li, J. Chen, J. X. Liu, R. J. Wang, X. F. Xu, J. F. Yao, and J. H. Guo, “Smartphone-based blood lipid data acquisition for cardiovascular disease management in internet of medical things”, IEEE Access, 7, pp. 75276-75283 (2019).

[13] OMRON blood pressure monitoring device: https://www.healthcare.omron.co.jp/corp/news/2019/1024.html.

[14] OMRON blood glucose monitoring device: https://www.omron.co.jp/press/2008/04/h0415.html.

[15]S. R. Steinhubl, J. Waalen, A. M. Edwards, L. M. Ariniello, R. R. Mehta, G. S. Ebner, C. C. Pharm, K. B. Motes, E. Felicione, T. Sarich, and E. J. Topol, “Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: the mSToPS randomized clinical trial”, Jama, 320 (2), pp. 146-155 (2018).

[16]N. Marczin, Disease Markers in Exhaled Breath, M. Yacoub, ed., Marcel Dekker, New York (2003) Chap. 1.

[17]C. Wang, and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits”, Sens., 9(10), 8230-8262 (2009).

[18]M. Sawano, “Basics and medical applications of breath analysis”, Japan Air Cleaning Association, 54 (5), pp. 329-332 (2017). [in Japanese].

[19]B. J. Novak, D. R. Blake, S. Meinardi, F. S. Rowland, A. Pentello, D. M. Cooper, and P. R. Galassetti, “Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes”, Proceedings of the National Academy of Science, 104 (40), pp. 15613-15618 (2007).

[20]P. R. Galassetti, B. Novak, D. Nemet, C. R. Gottron, D. M. Cooper, S. Meinardi, R. Newcomb, F. Zaldivar, and R. Blake, “Breath ethanol and acetone as indicators of serum glucose levels: an initial report”, Diabetes technology & Therapeutics, 7 (1), pp. 115-123 (2005).

[21]M. Phillips, R. N. Cataneo, T. Cheema, and J. Greenberg, “Increased breath biomarkers of oxidative stress in diabetes mellitus”, Clinica Chimica Acta, 334 (1-2), pp. 189-194 (2004).

[22]D. Roccarina, E. C. Lauritano, M. Gabrielli, F. Franceschi, V. Ojetti, and A. Gasbarrini, “The role of methane in intestinal disease”, The American journal of gastroenterology, 105 (6), pp.1250-1256 (2010).

[23]A. B. Sahakian, S. R. Lee, and M. Pimetel, “Methane and the gastrointestinal tract”, Digestive diseases and sciences, 55 (8), pp.2135- 2143 (2010).

[24]M. Pimentel, A. G. Mayer, S. Park, E. J. Chow, A. Hasan, and Y. Kong, “Methane production during lactulose breath test is associated with gastrointestinal disease presentation”, Digestive Diseases and Science, 48 (1), pp. 86-92 (2003).

[25]S. W. Ryter, and A. MK. Choi, “Therapeutic applications of carbon monoxide in lung disease”, Current opinion in pharmacology, 6 (3), pp. 257-262 (2006).

[26]K. Zayasu, K. Sekizawa, S. Okinaga, M. Yamaya, T. Ohrui, and H. Sasaki, “Increased carbon monoxide in exhaled air of asthmatic patients”, American Journal of respiratory and Critical Care Medicine, 156 (4), pp. 1140-1143 (1997).

[27]P. Paredi, W. Biernacki, G. Invernizzi, S. A. Kharitnov, and P. J. Barnes, “Exhaled carbon monoxide levels elevated in diabetes and correlated with glucose concentration in blood: a new test for monitoring the disease?”, Chest, 116 (4), pp.1007-1011 (1999).

[28]H. Zan, W. Tsai, Y. Lo, Y. Wu, and Y. Yang, “Pentacene-based organic thin film transistors for ammonia sensing”, IEEE Sensors Journal, 12(3), pp.594-601 (2011).

[29]S. A. Kharitonov, K. Rajakusasingam, B. O’Connor, S. R. Durham, and P. J. Barnes, “Nasal nitric oxide is increased in patients with asthma and allergic rhinitis and may be modulated by nasal glucocorticoids”, Journal of allergy and clinical immunology, 99 (1), pp. 58-64 (1997).

[30]K. Kao, M. Hsu, Y. Chang, S. Gwo, and J. Andrew Yeh, “A sub-ppm acetone gas sensor for diabetes detection using 10nm thick ultrathin InN FETs”, Sensors, 12 (6), pp.7157-7168 (2012).

[31]C. Turner, C. Walton, S. Hoashi, and M, Evans, “Breath acetone concentration decreases with blood glucose concentration in type 1 diabetes mellitus patients during hypoglycaemic clamps”, Journal of breath research, 3 (4), pp.046004 (2009).

[32]Y. Yamada, and S. Hiyama, “Breath acetone analyzer to achieve “Biochip mobile terminal”. NTT DOCOMO Technology, 14 (1), pp. 51- 57 (2012).

[33]M. Refat, T. J. M, M. Kazui, T. H. Risby, J. A. Perman, and K. B. Schwarz, “Utility of breath ethane as a noninvasive biomarker of vitamin E status in children”, Pediatric Research, 30 (5), pp. 396 (1991).

[34]C. A. Riely, G. Cohen, and M. Lieberman, “Ethane evolution: a new index of lipid peroxidation”, Science, 183 (4121), pp. 208-210 (1974).

[35]G. D. Lawrence, and G. Cohen, “Ethane exhalation as an index of in vivo lipid peroxidation: Concentrating ethane from a breath collection chamber”, Analytial Biochemistry, 122 (2), pp. 283-290 (1982).

[36]T. H. Risby, and S. F. Solga, “Current status of clinical breath analysis”, Applied Physics B: Lasers and Optics, Springer Berlin / Heidelberg, 85 (2-3), pp. 421-426 (2006).

[37]P. Li, E. Li, G. Xu, C. Wang, Y. Guo, and Y. He, “Breath pentane: an indicator for early and continuous monitoring of lipid peroxidation in hepatic ischaemia-reperfusion injury”, European Journal of Anaesthesiology, 26 (6), pp. 513-519 (2009).

[38]I. Horvath, W. Macnee, F. J. Kelly, P. N. R. Dekhuijzen, M. Philips, G. Doring, A. M. K. Choi, M. Yamaya, F. H. Bach, D. Willis, L. E. Donnelly, K. F. Chung, and J. Barnes, “Haemoxygenase-1 induction and exhaled markers of oxidative stress in lung diseases”, European Respiratory Journal, 18 (2), pp. 420-430 (2001).

[39]K. Kostikas, G. Papatheodorou, K. Psathakis, P. Panagou, and S. Loukides, “Oxidative stress in expired breath condensate of patients with COPD”, Chest, 124 (4), pp. 1373-1380 (2003).

[40]A. Antczak, “Markers of oxidative stress in exhaled breath condensate, NATO Science Series, Series.1, pp. 333-337 (2002).

[41]E. C. Lases, V. A. M. Duurkens, W. B. M. Geritsen, and F. J. L. M. Haas, “Oxidative stress after lung resection therapy: a pilot study”, Chest, 117 (4), pp. 999-1003 (2000).

[42]C. M. F. Kneepkens, G. Lepage, and C. C. Roy, “The potential of the hydrocarbon breath test as a measure of lipid peroxidation”, Free Radical Biology and Medicine, 17 (2), pp. 127-160 (1994).

[43] Otsuka pharmaceutical: https://www.otsuka.co.jp/health-and-illness/h-pylori/tests-and-eradication/.

[44] Anima: https://anima.jp/products/at1100a/.

[45] Horiba:http://www.horiba.com/jp/process-environmental/products-jp/combustion-process/research-purpose/details/va-5000-va-5000wm-multi-component-gas-analyzer-31115/.

[46] Tiger optics: https://www.tigeroptics.com/product/prismatic-2.html.

[47]R. Takasu, “Compact sensor for environmental monitoring”, Fujitsu, 61(1), pp. 47-51 (2010).[in Japanese]

[48]O. Tsuboi, S. Momose, and R. Takasu, Mobile sensor that quickly and selectively measures ammonia gas components in breath, Fujitsu Sci. Tech., 53(2), pp. 38-43 (2017).

[49]T. Itoh, D. Nagai, and W. Shin, “Development of sensor device for breath analysis”, Sansouken Today, pp. 12-13 (2013).[in Japanese]

[50]H. Wakana, M. Yamada, and M. Sakairi, Portable alcohol detection system with breath- recognition function, 2018 IEEE Sensors. IEEE, pp. 1-4 (2018).

[51]G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, and H. Rohrer, Nanomechanical membrane-type surface stress sensor, Nano Lett., 11(3), pp. 1044-1048 (2011).

[52]F. Loizeau, H. Lang, T. Akiyama, S. Gautsch, P. Vettiger, A. Tonin, G. Yoshikawa, C. Gerber, and N. Rooij, Piezoresistive membrane-type surface stress sensor arranged in arrays for cancer diagnosis through breath analysis, 2013 IEEE 26th International Conference on MEMS. IEEE, pp. 621-624 (2013).

[53]H. Miki, F. Matsubara, S. Nakashima, S. Ochi, K. Nakagawa, M. Matsuguchi, and Y. Sadaoka, A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives. Sensors and Actuators B: Chemical, 231, pp. 458-468 (2016).

[54]S. Tao, J. C. Fanguy, and T. V. S. Sarma, A fiber-optic sensor for monitoring trace ammonia in high-temperature gas samples with a CuCl2- doped porous silica optical fiber as a transducer, IEEE Sensors Journal, 8(12), pp. 2000-2007 (2008).

[55]H. Gatty, G. Stemme, and N. Roxhed, A miniaturized amperometric hydrogen sulfide sensor applicable for bad breath monitoring, Micromachines, 9(12), pp. 612 (2018).

[56]M. E. Achhab, and K. Schiebaum, Gas sensor based on plasma- electrochemically oxidized titanium foils, Journal of Sensors and Sensor Systems, 5, pp. 273-281 (2016).

[57]P. Sanchez, C. Zamarreno, M Hernaez, I. Matias, and F. Arregui, Exhaled breath optical fiber sensor based on LMRs for respiration monitoring, Sensors, 2014 IEEE, pp. 1142-1145 (2014).

[58]T. Iwata, T. Katagiri, and Y. Matsuura, Real-time analysis of isoprene in breath by using ultraviolet-absorption spectroscopy with a hollow optical fiber gas cell, Sensors, 16(12), pp. 2058 (2016).

[59]R. Ueno, K. Ishii, K. Suzuki, and H. Funaki, Infrared multispectral imaging with silicon-based multiband pass filter and infrared focal plane array, 2015 9th International Conference on Sensing Technology (ICST). IEEE, pp. 211-214 (2015).

[60]L. Tombez, E. Zhang, J. Orcutt, S. Kamlapurkar, and W. Green, Methane absorption spectroscopy on a silicon photonic chip, Optica, 4(11), pp. 1322-1325 (2017).

[61]K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. Mcmillen, P. J. Mccann, M. A. Camp, Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy, Applied Physics B, 85, pp. 427-435 (2006).

[62]M. B. Frish, Current and emerging laser sensors for greenhouse gas sensing and leak detection, Next-Generation Spectroscopic Technologies VII. International Society for Optics and Photonics, 9101, pp. 91010H (2014).

[63]M. Murtz, D. Kleine, S. Stry, H. Dahnke, P. Hering, J. Lauterbach, K. Kleinermanns, W. Urban, H. Ehlers, and D. Ristau, “Ultra-sensitive trace gas monitoring with a CW Ring-down spectrometer”, Environmental Science and Pollution Research Special, 4, pp. 61-67 (2002).

[64]M. Murtz, D. Halmer, M. Horstjann, S. Thelen, P. Hering, “ Ultra sensitive trace gas detection for biomedical applications”, Spectrochimica Acta Part A, 63, pp. 963-969 (2005).

[65] K. Bodenhofer, A. Hierlemann, G. Noetzel, U. Weimar, and W. Gopel, “Performances of mass-sensitive devices for gas sensing: Thickness shear mode and surface acoustic wave transducers”, Analytical Chem., 68(13), pp. 2210-2218 (1996).

[66] K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. Fan, “On-chip fabry-perot interferometric sensors for micro-gas chromatography”, Sensors and Actuators B: Chem., 159(1), pp. 60-65 (2011).

[67]T. Iwata, T. Katagiri, and Y. Matsuura, “Real-time analysis of isoprene in breath by using ultraviolet-absorption spectroscopy with a hollow optical fiber gas cell”, Sens., 16(12), 2058 (2016).

[68]L. Tombez, E. Zhang, J. Orcutt, S. Kamlapurkar, and W. Green, “Methane absorption spectroscopy on a silicon photonic chip”, Opt., 4(11), 1322-1325 (2017).

[69]K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. Mcmillen, P. J. Mccann, and M. A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy”, App. Phys. B, 85, 427-435 (2006).

[70]H. Dahnke, D. Kleine, P. Hering, and M. Murtz,” Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B, 72(8), 971-975 (2001).

[71]N. Gayraud, L. W. Kornaszewski, J. M. Stone, J. C. Knight, D. T. Reid, D. P. Hand, and W. N. MacPherson, “Mid-infrared gas sensing using a photonic bandgap fiber”, App. Opt., 47(9), 1269-1277 (2008).

[72]R. E. Huffman, “Absorption cross-sections of atmospheric gases for use in aeronomy”, Can. J. of Chem., 47(10), pp. 1823-1834 (1969).

[73]HITRAN Database: http://www.cfa.harvard.edu/hitran/.

[74]A. Barth, “Infrared spectroscopy of proteins”, Biochim. et Biophys. Acta-Bioenerg., 1767(9), 1073-1101 (2007).

[75]W. Lai, S. Chakravarty, X. Wang, C. Lin, and R. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide”, Opt. Lett., 36(6), 984-986 (2011).

[76]S. S. Kim, C. Young, B. Vidakovic, S. G. A. Gabram-Mendola, C. W. Bayer, and B. Mizaikoff, “Potential and challenges for mid-infrared sensors in breath diagnostics” IEEE Sens. J., 10(1), 145-158 (2010).

[77]A. Wilk, F. Seichter, S. Kim, E. Tutuncu, B. Mizaikoff, J.A. Vogt, U. Wachter, and P. Radermacher “Toward the quantification of the 13CO2/12CO2 ratio in exhaled mouse breath with midinfrared hollow waveguide gas sensors”, Anal. Bioanal. Chem., 402(1), 397-404 (2012).

[78]M. Tsujino, H. Hokazono, J. Chen, and K. Hamamoto, “Optical amplifier assisted cavity ring down spectroscopy (CRDS) method for compact infrared sensing”, Tech. Dig. MOC, H57, 1-2 (2013).

[79]A. K. Chu, and S. F. Hong, “Buried sol-gel/SiON waveguide structure for passive alignment to single-mode fiber on Si substrate”, IEEE Photonics Tech. Lett., 19(1), pp. 45-47 (2007).

[80]Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang- Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings”, Opt. Express, 17(3), pp. 1508- 1517 (2009).

[81]R. Bicknell, L. King, C. E. Otis, J. S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, “Fabrication and characterization of hollow metal waveguides for optical interconnect applications”, Appl. Phys. A, 95(4), pp. 1059-1066 (2009).

[82]C. Shi, C. Lu, C. Gu, L. Tian, R. Newhouse, S. Chen, and J. Z. Zhang, “Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering”, Appl. Phys. Lett., 93(15), pp. 153101-3 (2008).

[83]T. Alasaarela, D. Korn, L. Alloatti, A. Saynatjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, “Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition”, Opt. Express, 19(12), pp. 11529-11538 (2011).

[84]R. Ding, T. Baehr-Jones, W. J. Kim, X. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and Michael Hochberg, “Low-loss strip-loaded slot waveguides in Silicon-on-Insulator”, Opt. Express, 18(24), pp. 25061- 25067 (2010).

[85]R. Ding, T. Baehr-Jones, W. Kim, B. Boyko, R. Bojko, A. Spott, A. Pomerene, C. Hill, W. Reinhardt, and M. Hochberg, “Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator”, Appl. Phys. Lett., 98(23), pp. 233303 (2011).

[86] J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities”, Opt. Express, 16(6), pp. 4296-4301 (2008).

[87] J. Chen, H. Hokazono, D. Nakashima, M. Tsujino, Y. Hashizume, M. Itoh, and K. Hamamoto, “Low loss silica high-mesa waveguide for infrared sensing”, Jpn. J. of App. Phys., 53(2), 022502 (2014).

[88]I. Alam, Y. Matsunaga, S. Hirofuji, T. Mitomi, T. Murayama, Y. Kokaze, H. Wado, Y. Takeuchi, and K. Hamamoto, “Low loss high-mesa Si/SiO2 wire waveguides fabricated using neutral loop discharge plasma etching for infrared absorption spectroscopy”,15th Microoptics Conference, F3 (2009).

[89]T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Lable-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator”, IEEE Photonics J., 1(3) (2009).

[90]S. Wu, A. Deev, M. Haught, and Y. Tang, “Hollow waveguide quantum cascade laser spectrometer as an online microliter sensor for gas chromatography”, J. of Chromatography A, 1188, pp. 327-330 (2008).

[91]Y. Han, W. Y. Li, H. S. Jiang, and K. Hamamoto, “Significant propagation loss reduction on silicon high-mesa waveguides using thermal oxidation technique”, 24th OptoElectronics and Communications Conference, P47, pp, 1-3 (2019).

[92]J. Chen, H. Hokazono, M. Tsujino, D. Nakashima, and K. Hamamoto, “Proposal of multiple-slot silica high-mesa waveguide for infrared absorption”, IEICE Electronics Express, 10, pp. 20130871 (2013).

[93] INVOCOM: Optical amplifiers: classification, basic configurations and principles of operation: www.invocom.et.put.poznan.pl/

[94]M. J. Connolly, Semiconductor Optical Amplifiers, Springer-Verlag, Boston (2002) Chap.1.

[95]W. Y. Li, Y. Han, Z. H. Chen, H. S. Jiang, and K. Hamamoto, “Amplifier- assisted CRDS (cavity ring-down spectroscopy) toward compact breath sensing”, Jpn. J. of App. Phys., 58(SJ), SJJD01 (2019).

[96]Ter-Mikirtychev, and Vartan, Fundamentals of fiber lasers and fiber amplifiers, Springer, Swizerland (2014) Chap. 7.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る