リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「p53 deficiency augments nucleolar instability after ionizing irradiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

p53 deficiency augments nucleolar instability after ionizing irradiation

Sangeeta, Kakoti サンギータ, カコテーイ 群馬大学

2020.03.24

概要

Ribosomes are important cellular components that maintain cell homeostasis through overall protein synthesis. The nucleolus is a prominent sub-nuclear structure that contains ribosomal DNA (rDNA) encoding ribosomal RNA (rRNA), an essential component of ribosomes. Despite the significant role of the rDNA– rRNA– ribosome axis in cellular homeostasis, the stability of rDNA in the context of the DNA damage response has not been fully investigated. In this study, we examined the number and morphological changes of nucleolin, a marker of the nucleolus, following ionizing radiation (IR) to investigate the impact of DNA damage on nucleolar stability. We found an increase in the number of nucleoli per cell in HCT116 and U2OS cells following IR. Interestingly, the IR-dependent increase in nucleolar fragmentation was enhanced by p53 deficiency. In addition, the morphological analysis showed several distinct types of nucleolar fragmentation following IR. The pattern of nucleolar morphology differed between HCT116 and U2OS cells, and the p53 deficiency altered the pattern of nucleolar morphology. Furthermore, carbon-ion particle irradiation induced more nucleolar fragmentation than X-ray in HCT116 cells. Finally, we found a significant decrease in rRNA synthesis in HCT116 p53− /− cells following IR suggesting that severe nucleolar fragmentation down-reg ulates rRNA transcription.
Our study suggests that p53 plays an essential role in protecting transcriptional activity of rDNA in response to DNA damage.

この論文で使われている画像

参考文献

1. Buchwalter A and Hetzer MW: Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 8: 328, 2017.

2. Ruggero D: Revisiting the nucleolus: From marker to dynamic integrator of cancer signaling. Sci Signal 5: pe38, 2012.

3. Montanaro L, Trere D and Derenzini M: Changes in ribosome biogenesis may induce cancer by down-regulating the cell tumor suppressor potential. Biochim Biophysica Acta 1825: 101-110, 2012.

4. Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA and Pierce AJ: Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 69: 9096-9104, 2009.

5. Negi SS and Brown P: rRNA synthesis inhibitor, CX-5461, activates ATM/ATR pathway in acute lymphoblastic leukemia, arrests cells in G2 phase and induces apoptosis. Oncotarget 6: 18094-18104, 2015.

6. Shibata A and Jeggo P: A historical reflection on our under- standing of radiation-induced DNA double strand break repair in somatic mammalian cells; interfacing the past with the present. Int J Radiat Biol 95: 945-956, 2019.

7. van Gent DC, Hoeijmakers JH and Kanaar R: Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2: 196-206, 2001.

8. Hada M and Georgakilas AG: Formation of clustered DNA damage after high-LET irradiation: A review. J Radiat Res 49: 203-210, 2008.

9. Nakajima NI, Brunton H, Watanabe R, Shrikhande A, Hirayama R, Matsufuji N, Fujimori A, Murakami T, Okayasu R, Jeggo P and Shibata A: Visualisation of gammaH2AX foci caused by heavy ion particle traversal; distinction between core track versus non-track damage. PLoS One 8: e70107, 2013.

10. Hagiwara Y, Niimi A, Isono M, Yamauchi M, Yasuhara T, Limsirichaikul S, Oike T, Sato H, Held KD, Nakano T and Shibata A: 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation. Oncotarget 8: 109370-109381, 2017.

11. Hagiwara Y, Oike T, Niimi A, Yamauchi M, Sato H, Limsirichaikul S, Held KD, Nakano T and Shibata A: Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. J Radiat Res 60: 69-79, 2019.

12. Amornwichet N, Oike T, Shibata A, Ogiwara H, Tsuchiya N, Yamauchi M, Saitoh Y, Sekine R, Isono M, Yoshida Y, et al: Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe. PLoS One 9: e115121, 2014.

13. Durante M and Cucinotta FA: Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 8: 465-472, 2008.

14. Henderson AS, Warburton D and Atwood KC: Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69: 3394-3398, 1972.

15. Durkin SG and Glover TW: Chromosome fragile sites. Annu Rev Genet 41: 169-192, 2007.

16. Montgomery PO, Karney D, Reynolds RC and McClendon D: Cellular and subcellular effects of ionizing radiations. Am J Pathol 44: 727-746, 1964.

17. Hidvegi EJ, Holland J, Boloni E, Lonai P, Antoni F and Varteresz V: The effect of whole-body x-irradiation of guinea pigs on liver ribosomes. Biochem J 109: 495-505, 1968.

18. Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Löbrich M and Jeggo PA: Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 30: 1079-1092, 2011.

19. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.

20. Ohno T: Particle radiotherapy with carbon ion beams. EPMA J 4: 9, 2013.

21. Oike T, Niimi A, Okonogi N, Murata K, Matsumura A, Noda SE, Kobayashi D, Iwanaga M, Tsuchida K, Kanai T, et al: Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy. Sci Rep 6: 22275, 2016.

22. Niimi A, Yamauchi M, Limsirichaikul S, Sekine R, Oike T, Sato H, Suzuki K, Held KD, Nakano T and Shibata A: Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation. Genes Chromosomes Cancer 55: 650-660, 2016.

23. Petrov AS, Bernier CR, Gulen B, Waterbury CC, Hershkovits E, Hsiao C, Harvey SC, Hud NV, Fox GE, Wartell RM and Williams LD: Secondary structures of rRNAs from all three domains of life. PLoS One 9: e88222, 2014.

24. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O and Jeggo PA: gammaH2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limi- tations and optimization. Cell Cycle 9: 662-669, 2010.

25. Powell S and McMillan TJ: DNA damage and repair following treatment with ionizing radiation. Radiother Oncol 19: 95-108, 1990.

26. Vilenchik MM and Knudson AG: Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100: 12871-12876, 2003.

27. Amundson SA, Myers TG and Fornace AJ Jr: Roles for p53 in growth arrest and apoptosis: Putting on the brakes after genotoxic stress. Oncogene 17: 3287-3299, 1998.

28. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD and Thomas P: Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26: 125-132, 2011.

29. Huang H, Fletcher L, Beeharry N, Daniel R, Kao G, Yen TJ and Muschel RJ: Abnormal cytokinesis after x-irradiation in tumor cells that override the G2 DNA damage checkpoint. Cancer Res 68: 3724-3732, 2008.

30. Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N, Ohtani N, Hara E, Nakamura M, Morita A, et al: Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell 55: 73-84, 2014.

31. James A, Wang Y, Raje H, Rosby R and DiMario P: Nucleolar stress with and without p53. Nucleus 5: 402-426, 2014.

32. Takagi M, Absalon MJ, McLure KG and Kastan MB: Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123: 49-63, 2005.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る