リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Salt loading with unilateral nephrectomy accelerate decline in glomerular filtration rate in the hypertensive, obese, type 2 diabetic SDT fatty rat model of diabetic kidney disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Salt loading with unilateral nephrectomy accelerate decline in glomerular filtration rate in the hypertensive, obese, type 2 diabetic SDT fatty rat model of diabetic kidney disease

Shinozaki, Yuichi Katayama, Yuko Yamaguchi, Fuminari Suzuki, Tomohisa Watanabe, Kana Uno, Kinuko Tsutsui, Takahiro Sugimoto, Miki Shinohara, Masami Miyajima, Katsuhiro Ohta, Takeshi 京都大学 DOI:10.1111/1440-1681.13621

2022.04

概要

For the evaluation of novel therapeutic agents for diabetic kidney disease (DKD), it is desirable to examine their efficacy in animal models by using the glomerular filtration rate (GFR) as an index. For this purpose, animal models that demonstrate a short-term GFR decline because of disease progression are required. Therefore, we aimed to develop such an animal model of DKD by using obese type 2 diabetic spontaneously diabetic Torii (SDT) fatty rats treated with salt loading by drinking water containing sodium chloride with or without unilateral nephrectomy. As a result, we have found that 0.3% salt loading with unilateral nephrectomy or 0.8% salt loading alone caused a rapid GFR decline, hypertension and rapid development of tubulointerstitial fibrosis. Moreover, the addition of losartan to a mixed diet suppressed the GFR decline in SDT fatty rats treated with 0.3% salt loading with unilateral nephrectomy. These results suggest that the model of SDT fatty rats treated with 0.3% salt loading and unilateral nephrectomy could be used as a hypertensive DKD model for evaluating therapeutic agents based on suppression of GFR decline.

この論文で使われている画像

参考文献

1.

Kota SK, Meher LK, Jammula S, Kota SK, Modi KD. ACE inhibitors or ARBs for diabetic

nephropathy: the unrelenting debate. Diabetes Metab Syndr. 2012;6(4):215-217.

2.

Keane WF, Brenner BM, de Zeeuw D, et al. The risk of developing end-stage renal disease in patients

with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int. 2003;63(4):1499-1507.

3.

Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of

diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001;345(12):870-878.

4.

Tuttle KR, Cherney DZ, Diabetic Kidney Disease Task Force of the American Society of N. Sodium

Glucose Cotransporter 2 Inhibition Heralds a Call-to-Action for Diabetic Kidney Disease. Clin J Am

Soc Nephrol. 2020;15(2):285-288.

5.

Tuttle KR, Brosius FC, 3rd, Cavender MA, et al. SGLT2 Inhibition for CKD and Cardiovascular

Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney

Foundation. Am J Kidney Dis. 2021;77(1):94-109.

6.

Chander PN, Gealekman O, Brodsky SV, et al. Nephropathy in Zucker diabetic fat rat is associated

with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger

ebselen. J Am Soc Nephrol. 2004;15(9):2391-2403.

7.

Nangaku M, Izuhara Y, Usuda N, et al. In a type 2 diabetic nephropathy rat model, the improvement of

obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy.

Nephrol Dial Transplant. 2005;20(12):2661-2669.

8.

Zhao HJ, Wang S, Cheng H, et al. Endothelial nitric oxide synthase deficiency produces accelerated

nephropathy in diabetic mice. J Am Soc Nephrol. 2006;17(10):2664-2669.

9.

Mohan S, Reddick RL, Musi N, et al. Diabetic eNOS knockout mice develop distinct macro- and

microvascular complications. Lab Invest. 2008;88(5):515-528.

10.

Giani JF, Burghi V, Veiras LC, et al. Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker

diabetic fatty rats. Am J Physiol Renal Physiol. 2012;302(12):F1606-1615.

11.

Harlan SM, Heinz-Taheny KM, Sullivan JM, et al. Progressive Renal Disease Established by

Renin-Coding Adeno-Associated Virus-Driven Hypertension in Diverse Diabetic Models. J Am Soc

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

23 / 30

Nephrol. 2018;29(2):477-491.

12.

Rosenthal T, Younis F, Alter A. Combating Combination of Hypertension and Diabetes in Different Rat

Models. Pharmaceuticals. 2010;3(4):916-939.

13.

Tang M, Wei X, Wan X, Ding Z, Ding Y, Liu J. The role and relationship with efflux pump of biofilm

formation in Klebsiella pneumoniae. Microb Pathog. 2020;147:104244.

14.

Ishii Y, Ohta T, Sasase T, et al. Pathophysiological analysis of female Spontaneously Diabetic Torii

fatty rats. Exp Anim. 2010;59(1):73-84.

15.

Kemmochi Y, Fukui K, Maki M, et al. Metabolic Disorders and Diabetic Complications in

Spontaneously Diabetic Torii Lepr (fa) Rat: A New Obese Type 2 Diabetic Model. J Diabetes Res.

2013;2013:948257.

16.

Ohta T, Katsuda Y, Miyajima K, et al. Gender differences in metabolic disorders and related diseases in

Spontaneously Diabetic Torii-Lepr(fa) rats. J Diabetes Res. 2014;2014:841957.

17.

Katsuda Y, Sasase T, Tadaki H, et al. Contribution of hyperglycemia on diabetic complications in obese

type 2 diabetic SDT fatty rats: effects of SGLT inhibitor phlorizin. Exp Anim. 2015;64(2):161-169.

18.

Toriniwa Y, Saito T, Miyajima K, et al. Investigation of pharmacological responses to anti-diabetic

drugs in female Spontaneously Diabetic Torii (SDT) fatty rats, a new nonalcoholic steatohepatitis

(NASH) model. J Vet Med Sci. 2018;80(6):878-885.

19.

Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities.

Clin J Am Soc Nephrol. 2017;12(12):2032-2045.

20.

Bayorh MA, Mann G, Walton M, Eatman D. Effects of enalapril, tempol, and eplerenone on

salt-induced hypertension in dahl salt-sensitive rats. Clin Exp Hypertens. 2006;28(2):121-132.

21.

Buss SJ, Backs J, Kreusser MM, et al. Spironolactone preserves cardiac norepinephrine reuptake in

salt-sensitive Dahl rats. Endocrinology. 2006;147(5):2526-2534.

22.

Cohen MP, Lautenslager GT, Shearman CW. Increased urinary type IV collagen marks the

development of glomerular pathology in diabetic d/db mice. Metabolism. 2001;50(12):1435-1440.

23.

Gartner K. Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic

mice (c57bl/6j db/db and c57bl/ksj db/db). Diabetologia. 1978;15(1):59-63.

24.

Charytan DM, Forman JP. You are what you eat: dietary salt intake and renin-angiotensin blockade in

diabetic nephropathy. Kidney Int. 2012;82(3):257-259.

25.

Katsuda Y, Kemmochi Y, Maki M, et al. Effects of unilateral nephrectomy on renal function in male

Spontaneously Diabetic Torii fatty rats: a novel obese type 2 diabetic model. J Diabetes Res.

2014;2014:363126.

26.

O'Sullivan J, Finnie SL, Teenan O, et al. Refining the Mouse Subtotal Nephrectomy in Male 129S2/SV

Mice for Consistent Modeling of Progressive Kidney Disease With Renal Inflammation and Cardiac

Dysfunction. Front Physiol. 2019;10:1365.

27.

Racanicchi IA, Oliveira AB, Barbieri RL, Delle H, Duarte Ida S, Leme PL. Experimental models of

renal dysfunction in female rats. Functional and histological aspects after unilateral nephrectomy or

ligation of right renal vein with kidney preservation. Acta Cir Bras. 2015;30(12):824-830.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

24 / 30

28.

Heyman SN, Khamaisi M, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia response and

the progression of chronic kidney disease. American journal of nephrology. 2008;28(6):998-1006.

29.

Heyman SN, Khamaisi M, Zorbavel D, Rosen S, Abassi Z. Role of Hypoxia in Renal Failure Caused

by Nephrotoxins and Hypertonic Solutions. Seminars in nephrology. 2019;39(6):530-542.

30.

Heyman SN, Gorelik Y, Zorbavel D, et al. Near-drowning: new perspectives for human hypoxic acute

kidney injury. Nephrol Dial Transplant. 2020;35(2):206-212.

31.

Bobulescu IA. Renal lipid metabolism and lipotoxicity. Current opinion in nephrology and

hypertension. 2010;19(4):393-402.

32.

Afshinnia F, Nair V, Lin J, et al. Increased lipogenesis and impaired beta-oxidation predict type 2

diabetic kidney disease progression in American Indians. JCI insight. 2019;4(21).

33.

Katsuda Y, Kemmochi Y, Maki M, et al. Physiological changes induced by salt intake in female

Spontaneously Diabetic Torii-Lepr(fa) (SDT fatty) rat, a novel obese type 2 diabetic model. Animal

science journal = Nihon chikusan Gakkaiho. 2014;85(5):588-594.

34.

Saavedra JM. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders.

Clinical science. 2012;123(10):567-590.

35.

Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. American journal of

hypertension. 2015;28(3):289-299.

36.

Baylis C, Corman B. The aging kidney: insights from experimental studies. J Am Soc Nephrol.

1998;9(4):699-709.

37.

Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal Models of Diabetes-Associated Renal

Injury. J Diabetes Res. 2020;2020:9416419.

38.

Lee M, Sorn SR, Lee Y, Kang I. Salt Induces Adipogenesis/Lipogenesis and Inflammatory

Adipocytokines Secretion in Adipocytes. International journal of molecular sciences. 2019;20(1).

39.

Soler MJ, Riera M, Batlle D. New experimental models of diabetic nephropathy in mice models of type

2 diabetes: efforts to replicate human nephropathy. Exp Diabetes Res. 2012;2012:616313.

40.

Bhuiyan AS, Rafiq K, Kobara H, Masaki T, Nakano D, Nishiyama A. Effect of a novel nonsteroidal

selective mineralocorticoid receptor antagonist, esaxerenone (CS-3150), on blood pressure and renal

injury in high salt-treated type 2 diabetic mice. Hypertension research : official journal of the Japanese

Society of Hypertension. 2019;42(6):892-902.

41.

Nishiyama A, Yoshizumi M, Rahman M, et al. Effects of AT1 receptor blockade on renal injury and

mitogen-activated protein activity in Dahl salt-sensitive rats. Kidney Int. 2004;65(3):972-981.

42.

Hinojosa-Laborde C, Jespersen B, Shade R. Physiology Lab Demonstration: Glomerular Filtration Rate

in a Rat. J Vis Exp. 2015(101):e52425.

43.

Sano R, Ishii Y, Yamanaka M, et al. Glomerular hyperfiltration with hyperglycemia in the

spontaneously diabetic Torii (SDT) fatty rat, an obese type 2 diabetic model. Physiol Res.

2021;70(1):45-54.

44.

Ellery SJ, Cai X, Walker DD, Dickinson H, Kett MM. Transcutaneous measurement of glomerular

filtration rate in small rodents: through the skin for the win? Nephrology (Carlton).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

25 / 30

2015;20(3):117-123.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

26 / 30

Figure 1

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

27 / 30

Figure 2

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

28 / 30

Figure 3

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

29 / 30

Figure 4

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

30 / 30

Figure 5

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る