リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the acceleration of renal decline in rat models of diabetic kidney disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the acceleration of renal decline in rat models of diabetic kidney disease

Shinozaki, Yuichi 京都大学 DOI:10.14989/doctor.k24650

2023.03.23

概要

DKD is characterized by a complicated pathology that involves renal anemia, obesity,
hypertension, hyperlipidemia, and hyperglycemia, accompanied by a decline in renal
function. The eGFR or Ccr is frequently used to assess renal function in patients with
DKD. For over a decade, ACE inhibitors and ARBs such as ramipril and losartan have
been used to treat DN other than hypertension (Kota et al., 2012). However, the target
patients of these agents are limited to those suffering from DN with hypertension, type 2
diabetes mellitus, and proteinuria (Parving et al., 2001; Keane et al., 2003). In recent
years, evidences are accumulating that SGLT2 inhibitors prevent disease progression in
established heart failure or CKD, independent of the presence of diabetes (Heerspink et
al., 2020; Packer et al., 2020), and it is likely that the basic medication used for CKD as
well as DKD patients may be changed in the near future to SGLT2 inhibitors (Tuttle et
al., 2021).
Various animal models of DKD are known, however, the complex etiological
complications associated with decreased renal function in patients with DKD, develop
in only a few of them (Chander et al., 2004; Shinozaki et al., 2022). As an example, in
the widely used streptozotocin (STZ)-induced type 1 diabetes model, blood glucose
levels are elevated but, unlike in humans, hypertension, albuminuria level, and the loss
of renal function are often much less severe (Tesch et al., 2007). ...

この論文で使われている画像

参考文献

Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, de Boer IH (2016).

Clinical Manifestations of Kidney Disease Among US Adults With Diabetes, 1988-2014.

JAMA 316: 602-610. doi: 10.1001/jama.2016.10924

Afshinnia F, Nair V, Lin J, Rajendiran TM, Soni T, Byun J, Sharma K, Fort PE, Gardner

TW, Looker HC, Nelson RG, Brosius FC, Feldman EL, Michailidis G, Kretzler M,

Pennathur S (2019). Increased lipogenesis and impaired beta-oxidation predict type 2

diabetic kidney disease progression in American Indians. JCI Insight 4. doi:

10.1172/jci.insight.130317

Ale-Chilet A, Bernal-Morales C, Barraso M, Hernandez T, Oliva C, Vinagre I, Ortega E,

Figueras-Roca M, Sala-Puigdollers A, Esquinas C, Gimenez M, Esmatjes E, Adan A,

Zarranz-Ventura J (2021). Optical Coherence Tomography Angiography in Type 1

Diabetes Mellitus-Report 2: Diabetic Kidney Disease. J Clin Med 11. doi:

10.3390/jcm11010197

Alicic RZ, Rooney MT, Tuttle KR (2017). Diabetic Kidney Disease: Challenges,

Progress, and Possibilities. Clin J Am Soc Nephrol 12: 2032-2045. doi:

10.2215/CJN.11491116

Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C,

Schloemer P, Joseph A, Filippatos G, Investigators F-D (2020). Effect of Finerenone on

Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med 383: 2219-2229.

62

doi: 10.1056/NEJMoa2025845

Baylis C, Corman B (1998). The aging kidney: insights from experimental studies. J Am

Soc Nephrol 9: 699-709. doi: 10.1681/ASN.V94699

Bayorh MA, Mann G, Walton M, Eatman D (2006). Effects of enalapril, tempol, and

eplerenone on salt-induced hypertension in dahl salt-sensitive rats. Clin Exp Hypertens

28: 121-132. doi: 10.1080/10641960500468276

Bhuiyan AS, Rafiq K, Kobara H, Masaki T, Nakano D, Nishiyama A (2019). Effect of a

novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone

(CS-3150), on blood pressure and renal injury in high salt-treated type 2 diabetic mice.

Hypertens Res 42: 892-902. doi: 10.1038/s41440-019-0211-0

Bobulescu IA (2010). Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol

Hypertens 19: 393-402. doi: 10.1097/MNH.0b013e32833aa4ac

Buss SJ, Backs J, Kreusser MM, Hardt SE, Maser-Gluth C, Katus HA, Haass M (2006).

Spironolactone preserves cardiac norepinephrine reuptake in salt-sensitive Dahl rats.

Endocrinology 147: 2526-2534. doi: 10.1210/en.2005-1167

Chander PN, Gealekman O, Brodsky SV, Elitok S, Tojo A, Crabtree M, Gross SS,

Goligorsky MS (2004). Nephropathy in Zucker diabetic fat rat is associated with

oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite

63

scavenger

ebselen.

Am

Soc

Nephrol

15:

2391-2403.

doi:

10.1097/01.ASN.0000135971.88164.2C

Charytan DM, Forman JP (2012). You are what you eat: dietary salt intake and

renin-angiotensin blockade in diabetic nephropathy. Kidney Int 82: 257-259. doi:

10.1038/ki.2012.148

Cohen MP, Lautenslager GT, Shearman CW (2001). Increased urinary type IV collagen

marks the development of glomerular pathology in diabetic d/db mice. Metabolism 50:

1435-1440. doi: 10.1053/meta.2001.28074

Cooper ME, El-Osta A (2010). Epigenetics: mechanisms and implications for diabetic

complications. Circ Res 107: 1403-1413. doi: 10.1161/CIRCRESAHA.110.223552

Ellery SJ, Cai X, Walker DD, Dickinson H, Kett MM (2015). Transcutaneous

measurement of glomerular filtration rate in small rodents: through the skin for the win?

Nephrology (Carlton) 20: 117-123. doi: 10.1111/nep.12363

Fogo AB (2007). Mechanisms of progression of chronic kidney disease. Pediatr

Nephrol 22: 2011-2022. doi: 10.1007/s00467-007-0524-0

Fried L, Schmedt N, Folkerts K, Bowrin K, Raad H, Batech M, Kovesdy C (2022).

High unmet treatment needs in patients with chronic kidney disease and type 2 diabetes:

real-world evidence from a US claims database. Nephrol. Dial. Transplant. doi:

64

10.1093/ndt/gfac140

Gartner K (1978). Glomerular hyperfiltration during the onset of diabetes mellitus in

two strains of diabetic mice (c57bl/6j db/db and c57bl/ksj db/db). Diabetologia 15:

59-63. doi: 10.1007/BF01219330

Giani JF, Burghi V, Veiras LC, Tomat A, Munoz MC, Cao G, Turyn D, Toblli JE,

Dominici FP (2012). Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker

diabetic

fatty

rats.

Am J Physiol

Renal

Physiol

302:

F1606-1615.

doi:

10.1152/ajprenal.00063.2012

Harlan SM, Heinz-Taheny KM, Sullivan JM, Wei T, Baker HE, Jaqua DL, Qi Z, Cramer

MS, Shiyanova TL, Breyer MD, Heuer JG (2018). Progressive Renal Disease

Established by Renin-Coding Adeno-Associated Virus-Driven Hypertension in Diverse

Diabetic Models. J Am Soc Nephrol 29: 477-491. doi: 10.1681/ASN.2017040385

Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF,

Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjostrom CD, Toto RD, Langkilde

AM, Wheeler DC, Committees D-CT, Investigators (2020). Dapagliflozin in Patients

with

Chronic

Kidney

Disease.

Engl

Med

383:

1436-1446.

doi:

10.1056/NEJMoa2024816

Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D,

Judge P, Mayne KJ, Ng SYA, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K,

65

Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu W, Kadowaki T, Nangaku M, Levin

A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR,

Steubl D, Petrini M, Massey D, Eilbracht J, Brueckmann M, Landray MJ, Baigent C,

Haynes R (2022). Empagliflozin in Patients with Chronic Kidney Disease. N Engl J

Med. doi: 10.1056/NEJMoa2204233

Heyman SN, Khamaisi M, Rosen S, Rosenberger C (2008). Renal parenchymal hypoxia,

hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28:

998-1006. doi: 10.1159/000146075

Heyman SN, Khamaisi M, Zorbavel D, Rosen S, Abassi Z (2019). Role of Hypoxia in

Renal Failure Caused by Nephrotoxins and Hypertonic Solutions. Semin Nephrol 39:

530-542. doi: 10.1016/j.semnephrol.2019.10.003

Heyman SN, Gorelik Y, Zorbavel D, Rosenberger C, Abassi Z, Rosen S, Khamaisi M

(2020). Near-drowning: new perspectives for human hypoxic acute kidney injury.

Nephrol. Dial. Transplant. 35: 206-212. doi: 10.1093/ndt/gfz016

Hinojosa-Laborde C, Jespersen B, Shade R (2015). Physiology Lab Demonstration:

Glomerular Filtration Rate in a Rat. J Vis Exp: e52425. doi: 10.3791/52425

Ishii Y, Ohta T, Sasase T, Morinaga H, Ueda N, Hata T, Kakutani M, Miyajima K,

Katsuda Y, Masuyama T, Shinohara M, Matsushita M (2010). Pathophysiological

analysis of female Spontaneously Diabetic Torii fatty rats. Exp Anim 59: 73-84. doi:

66

10.1538/expanim.59.73

Katsuda Y, Kemmochi Y, Maki M, Sano R, Ishii Y, Miyajima K, Kakimoto K, Ohta T

(2014a). Physiological changes induced by salt intake in female Spontaneously Diabetic

Torii-Lepr(fa) (SDT fatty) rat, a novel obese type 2 diabetic model. Anim Sci J 85:

588-594. doi: 10.1111/asj.12191

Katsuda Y, Kemmochi Y, Maki M, Sano R, Toriniwa Y, Ishii Y, Miyajima K, Kakimoto

K, Ohta T (2014b). Effects of unilateral nephrectomy on renal function in male

Spontaneously Diabetic Torii fatty rats: a novel obese type 2 diabetic model. J Diabetes

Res 2014: 363126. doi: 10.1155/2014/363126

Katsuda Y, Sasase T, Tadaki H, Mera Y, Motohashi Y, Kemmochi Y, Toyoda K,

Kakimoto K, Kume S, Ohta T (2015). Contribution of hyperglycemia on diabetic

complications in obese type 2 diabetic SDT fatty rats: effects of SGLT inhibitor

phlorizin. Exp Anim 64: 161-169. doi: 10.1538/expanim.14-0084

Kawai K, Sakairi T, Harada S, Shinozuka J, Ide M, Sato H, Tanaka M, Toriumi W,

Kume E (2012). Diet modification and its influence on metabolic and related

pathological alterations in the SHR/NDmcr-cp rat, an animal model of the metabolic

syndrome. Exp. Toxicol. Pathol. 64: 333-338. doi: 10.1016/j.etp.2010.09.006

KDIGO Blood Pressure Work Group (2021). KDIGO 2021 Clinical Practice Guideline

for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int 99:

67

S1-S87. doi: 10.1016/j.kint.2020.11.003

Keane WF, Brenner BM, de Zeeuw D, Grunfeld JP, McGill J, Mitch WE, Ribeiro AB,

Shahinfar S, Simpson RL, Snapinn SM, Toto R, Investigators RS (2003). The risk of

developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the

RENAAL study. Kidney Int 63: 1499-1507. doi: 10.1046/j.1523-1755.2003.00885.x

Kemmochi Y, Fukui K, Maki M, Kimura S, Ishii Y, Sasase T, Miyajima K, Ohta T

(2013). Metabolic Disorders and Diabetic Complications in Spontaneously Diabetic

Torii Lepr (fa) Rat: A New Obese Type 2 Diabetic Model. J Diabetes Res 2013: 948257.

doi: 10.1155/2013/948257

Kim-Mitsuyama S, Soejima H, Yasuda O, Node K, Jinnouchi H, Yamamoto E,

Sekigami T, Ogawa H, Matsui K (2018). Cardiovascular and renal protective role of

angiotensin blockade in hypertension with advanced CKD: a subgroup analysis of

ATTEMPT-CVD randomized trial. Sci Rep 8: 3150. doi: 10.1038/s41598-018-20874-4

Kota SK, Meher LK, Jammula S, Kota SK, Modi KD (2012). ACE inhibitors or ARBs

for diabetic nephropathy: the unrelenting debate. Diabetes Metab Syndr 6: 215-217. doi:

10.1016/j.dsx.2012.08.005

Lee M, Sorn SR, Lee Y, Kang I (2019). Salt Induces Adipogenesis/Lipogenesis and

Inflammatory Adipocytokines Secretion in Adipocytes. Int J Mol Sci 20. doi:

10.3390/ijms20010160

68

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW,

Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI (2009). A new equation to estimate

glomerular

filtration

rate.

Ann

Intern

Med

150:

604-612.

doi:

10.7326/0003-4819-150-9-200905050-00006

Maekawa M, Maekawa T, Sasase T, Takagi K, Takeuchi S, Kitamoto M, Nakagawa T,

Toyoda K, Konishi N, Ohta T, Yamada T (2022). Pathophysiological analysis of

uninephrectomized db/db mice as a model of severe diabetic kidney disease. Physiol

Res 71: 209-217. doi: 10.33549/physiolres.934784

Masuyama T, Katsuda Y, Shinohara M (2005). A novel model of obesity-related

diabetes: introgression of the Lepr(fa) allele of the Zucker fatty rat into nonobese

Spontaneously

Diabetic

Torii

(SDT)

rats.

Exp

Anim

54:

13-20.

doi:

10.1538/expanim.54.13

Mizuno M, Sada T, Kato M, Fukushima Y, Terashima H, Koike H (2006). The effect of

angiotensin II receptor blockade on an end-stage renal failure model of type 2 diabetes.

J Cardiovasc Pharmacol 48: 135-142. doi: 10.1097/01.fjc.0000245241.79959.d6

Mohan S, Reddick RL, Musi N, Horn DA, Yan B, Prihoda TJ, Natarajan M,

Abboud-Werner SL (2008). Diabetic eNOS knockout mice develop distinct macro- and

microvascular complications. Lab. Invest. 88: 515-528. doi: 10.1038/labinvest.2008.23

Nagai K, Asahi K, Iseki K, Yamagata K (2021). Estimating the prevalence of definitive

69

chronic kidney disease in the Japanese general population. Clin Exp Nephrol 25:

885-892. doi: 10.1007/s10157-021-02049-0

Nangaku M, Izuhara Y, Usuda N, Inagi R, Shibata T, Sugiyama S, Kurokawa K, van

Ypersele de Strihou C, Miyata T (2005). In a type 2 diabetic nephropathy rat model, the

improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and

prevents diabetic nephropathy. Nephrol. Dial. Transplant. 20: 2661-2669. doi:

10.1093/ndt/gfi096

Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G,

Desai M, Matthews DR, Group CPC (2017). Canagliflozin and Cardiovascular and

Renal Events in Type 2 Diabetes.

N Engl J Med 377: 644-657. doi:

10.1056/NEJMoa1611925

Nishiyama A, Yoshizumi M, Rahman M, Kobori H, Seth DM, Miyatake A, Zhang GX,

Yao L, Hitomi H, Shokoji T, Kiyomoto H, Kimura S, Tamaki T, Kohno M, Abe Y

(2004). Effects of AT1 receptor blockade on renal injury and mitogen-activated protein

activity

in

Dahl

salt-sensitive

rats.

Kidney

Int

65:

972-981.

doi:

10.1111/j.1523-1755.2004.00476.x

Nogueira A, Pires MJ, Oliveira PA (2017). Pathophysiological Mechanisms of Renal

Fibrosis: A Review of Animal Models and Therapeutic Strategies. In Vivo 31: 1-22. doi:

10.21873/invivo.11019

Norgaard SA, Briand F, Sand FW, Galsgaard ED, Sondergaard H, Sorensen DB, Sulpice

70

T (2019). Nephropathy in diabetic db/db mice is accelerated by high protein diet and

improved by the SGLT2 inhibitor dapagliflozin. Eur. J. Pharmacol. 860: 172537. doi:

10.1016/j.ejphar.2019.172537

Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A (2020). Animal Models of

Diabetes-Associated

Renal

Injury.

Diabetes

Res

2020:

9416419.

doi:

10.1155/2020/9416419

O'Sullivan J, Finnie SL, Teenan O, Cairns C, Boyd A, Bailey MA, Thomson A, Hughes

J, Benezech C, Conway BR, Denby L (2019). Refining the Mouse Subtotal

Nephrectomy in Male 129S2/SV Mice for Consistent Modeling of Progressive Kidney

Disease With Renal Inflammation and Cardiac Dysfunction. Front Physiol 10: 1365.

doi: 10.3389/fphys.2019.01365

Ohta T, Katsuda Y, Miyajima K, Sasase T, Kimura S, Tong B, Yamada T (2014). Gender

differences in metabolic disorders and related diseases in Spontaneously Diabetic

Torii-Lepr(fa) rats. J Diabetes Res 2014: 841957. doi: 10.1155/2014/841957

Ohtomo S, Izuhara Y, Nangaku M, Dan T, Ito S, van Ypersele de Strihou C, Miyata T

(2010). Body weight control by a high-carbohydrate/low-fat diet slows the progression

of diabetic kidney damage in an obese, hypertensive, type 2 diabetic rat model. J Obes

2010. doi: 10.1155/2010/136502

Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S,

Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E,

71

Bohm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez

Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I,

Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C,

Zannad F, Investigators EM-RT (2020). Cardiovascular and Renal Outcomes with

Empagliflozin

in

Heart

Failure.

Engl

Med

383:

1413-1424.

doi:

10.1056/NEJMoa2022190

Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P,

Irbesartan in Patients with Type D, Microalbuminuria Study G (2001). The effect of

irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes.

N Engl J Med 345: 870-878. doi: 10.1056/NEJMoa011489

Patel V, Joharapurkar A, Jain M (2021). Role of mineralocorticoid receptor antagonists

in kidney diseases. Drug Dev. Res. 82: 341-363. doi: 10.1002/ddr.21760

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R,

Agarwal R, Bakris G, Bull S, Cannon CP, Capuano G, Chu PL, de Zeeuw D, Greene T,

Levin A, Pollock C, Wheeler DC, Yavin Y, Zhang H, Zinman B, Meininger G, Brenner

BM, Mahaffey KW, Investigators CT (2019). Canagliflozin and Renal Outcomes in

Type 2 Diabetes and Nephropathy. N Engl J Med 380: 2295-2306. doi:

10.1056/NEJMoa1811744

Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, Joseph A, Kolkhof P,

Nowack C, Schloemer P, Ruilope LM, Investigators F-D (2021). Cardiovascular Events

with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med 385: 2252-2263.

72

doi: 10.1056/NEJMoa2110956

Racanicchi IA, Oliveira AB, Barbieri RL, Delle H, Duarte Ida S, Leme PL (2015).

Experimental models of renal dysfunction in female rats. Functional and histological

aspects after unilateral nephrectomy or ligation of right renal vein with kidney

preservation. Acta Cir Bras 30: 824-830. doi: 10.1590/S0102-865020150120000006

Rosenthal T, Younis F, Alter A (2010). Combating Combination of Hypertension and

Diabetes in Different Rat Models. Pharmaceuticals (Basel) 3: 916-939. doi:

10.3390/ph3040916

Roy S, Sala R, Cagliero E, Lorenzi M (1990). Overexpression of fibronectin induced by

diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A 87:

404-408. doi: 10.1073/pnas.87.1.404

Saavedra JM (2012). Angiotensin II AT(1) receptor blockers as treatments for

inflammatory brain disorders. Clin Sci (Lond) 123: 567-590. doi: 10.1042/CS20120078

Sano R, Ishii Y, Yamanaka M, Yasui Y, Kemmochi Y, Kuroki F, Sugimoto M, Fukuda S,

Sasase T, Miyajima K, Nakae D, Ohta T (2021). Glomerular hyperfiltration with

hyperglycemia in the spontaneously diabetic Torii (SDT) fatty rat, an obese type 2

diabetic model. Physiol Res 70: 45-54. doi: 10.33549/physiolres.934533

Shinozaki Y, Katayama Y, Yamaguchi F, Suzuki T, Watanabe K, Uno K, Tsutsui T,

73

Sugimoto M, Shinohara M, Miyajima K, Ohta T (2022). Salt loading with unilateral

nephrectomy accelerates decline in glomerular filtration rate in the hypertensive, obese,

type 2 diabetic SDT fatty rat model of diabetic kidney disease. Clin. Exp. Pharmacol.

Physiol. 49: 492-500. doi: 10.1111/1440-1681.13621

Soler MJ, Riera M, Batlle D (2012). New experimental models of diabetic nephropathy

in mice models of type 2 diabetes: efforts to replicate human nephropathy. Exp Diabetes

Res 2012: 616313. doi: 10.1155/2012/616313

Suzuki N (2015). Erythropoietin gene expression: developmental-stage specificity,

cell-type specificity, and hypoxia inducibility. Tohoku J Exp Med 235: 233-240. doi:

10.1620/tjem.235.233

Tang M, Wei X, Wan X, Ding Z, Ding Y, Liu J (2020). The role and relationship with

efflux pump of biofilm formation in Klebsiella pneumoniae. Microb. Pathog. 147:

104244. doi: 10.1016/j.micpath.2020.104244

Tesch GH, Allen TJ (2007). Rodent models of streptozotocin-induced diabetic

nephropathy.

Nephrology

(Carlton)

12:

261-266.

doi:

10.1111/j.1440-1797.2007.00796.x

Thomas MC (2014). Glycemic exposure, glycemic control, and metabolic karma in

diabetic

complications.

Adv

Chronic

10.1053/j.ackd.2014.03.004

74

Kidney

Dis

21:

311-317.

doi:

Thomas MC, Macisaac RJ, Jerums G, Weekes A, Moran J, Shaw JE, Atkins RC (2009).

Nonalbuminuric renal impairment in type 2 diabetic patients and in the general

population (national evaluation of the frequency of renal impairment cO-existing with

NIDDM [NEFRON] 11). Diabetes Care 32: 1497-1502. doi: 10.2337/dc08-2186

Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S,

Rossing P, Groop PH, Cooper ME (2015). Diabetic kidney disease. Nat Rev Dis Primers

1: 15018. doi: 10.1038/nrdp.2015.18

Toriniwa Y, Saito T, Miyajima K, Ishii Y, Uno K, Maekawa T, Matsui T, Kume S,

Yamada T, Ohta T (2018). Investigation of pharmacological responses to anti-diabetic

drugs in female Spontaneously Diabetic Torii (SDT) fatty rats, a new nonalcoholic

steatohepatitis

(NASH)

model.

J.

Vet.

Med.

Sci.

80:

878-885.

doi:

10.1292/jvms.18-0119

Tuttle KR, Cherney DZ, Diabetic Kidney Disease Task Force of the American Society

of N (2020). Sodium Glucose Cotransporter 2 Inhibition Heralds a Call-to-Action for

Diabetic

Kidney

Disease.

Clin

Am

Soc

Nephrol

15:

285-288.

doi:

10.2215/CJN.07730719

Tuttle KR, Brosius FC, 3rd, Cavender MA, Fioretto P, Fowler KJ, Heerspink HJL,

Manley T, McGuire DK, Molitch ME, Mottl AK, Perreault L, Rosas SE, Rossing P, Sola

L, Vallon V, Wanner C, Perkovic V (2021). SGLT2 Inhibition for CKD and

Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored

75

by the National Kidney Foundation. Am J Kidney Dis 77: 94-109. doi:

10.1053/j.ajkd.2020.08.003

Villapol S, Saavedra JM (2015). Neuroprotective effects of angiotensin receptor

blockers. Am J Hypertens 28: 289-299. doi: 10.1093/ajh/hpu197

Yokoyama H, Kawai K, Kobayashi M, Japan Diabetes Clinical Data Management Study

G (2007). Microalbuminuria is common in Japanese type 2 diabetic patients: a

nationwide survey from the Japan Diabetes Clinical Data Management Study Group

(JDDM 10). Diabetes Care 30: 989-992. doi: 10.2337/dc06-1859

Zhao HJ, Wang S, Cheng H, Zhang MZ, Takahashi T, Fogo AB, Breyer MD, Harris RC

(2006). Endothelial nitric oxide synthase deficiency produces accelerated nephropathy

in diabetic mice. J Am Soc Nephrol 17: 2664-2669. doi: 10.1681/ASN.2006070798

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins

T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, Investigators E-RO (2015).

Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J

Med 373: 2117-2128. doi: 10.1056/NEJMoa1504720

76

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る