リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Allosteric regulation accompanied by oligomeric state changes of Trypanosoma brucei GMP reductase」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Allosteric regulation accompanied by oligomeric state changes of Trypanosoma brucei GMP reductase

今村 章 大阪府立大学 DOI:info:doi/10.24729/00017384

2021.04.26

概要

GMP reductase (GMPR) is involved in purine salvage pathway, and catalyzes the reductive deamination of GMP to IMP. Our recent study revealed that TbGMPR possesses cystathionine β synthase (CBS) module, which is absent in mammalian GMPRs. In this study, I evaluated the effect of purine nucleotides on TbGMPR activity and their binding affinity to the CBS domain of TbGMPR. Furthermore, I prepared a CBS domain deletion mutant of TbGMPR (TbGMPR∆CBS), and characterized its enzymatic properties to investigate the contribution of the CBS domain to TbGMPR activity. In the absence of these nucleotides, Hill coefficient (nHill) of TbGMPR for GMP was 3.04, demonstrating that GMP induced a positive cooperativity effect on the enzymatic activity. In contrast, nHill of TbGMPR∆CBS for GMP in the absence of other purine nucleotides was 1.0, indicating that the deletion of CBS domain in TbGMPR caused a loss of positive cooperativity effect. Addition of GTP activated TbGMPR with decreasing K0.5 and increasing kcat. On the other hand, ATP suppressed TbGMPR with increasing K0.5 without altering nHill and kcat. The fluorescence quenching assays were performed to evaluate the binding affinity of purine nucleotides to TbGMPR by utilizing the tryptophan residue (Trp120) localized in the CBS domain. Each of GMP, GTP, and ATP induced the fluorescence quenching, showing that they bound to the vicinity of Trp120 in the CBS domain. These results suggest that GMP, GTP, and ATP bind to the vicinity of Trp120 in the CBS domain of TbGMPR and alter the affinity between GMP and TbGMPR to regulate the enzymatic activity.

この論文で使われている画像

参考文献

1. Steverding, D. The history of African trypanosomiasis. Parasit Vectors 1, 3 (2008).

2. Babokhov, P., Sanyaolu, A.O., Oyibo, W.A., Fagbenro-Beyioku, A.F. & Iriemenam, N.C. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathogens and Global Health 107, 242-252 (2013).

3. Stich, A., Abel, P.M. & Krishna, S. Human African trypanosomiasis. BMJ 325, 203 (2002).

4. Kato, C.D. et al. Clinical profiles, disease outcome and co-morbidities among T. b. rhodesiense sleeping sickness patients in Uganda. PLoS One 10, e0118370 (2015).

5. Ndung'u, J.M., Ruiz-Postigo, J.A., Franco, J.R., Lado, M. & Simarro, P.P. Human African Trypanosomiasis in South Sudan: How Can We Prevent a New Epidemic? PLoS Neglected Tropical Diseases 6(2012).

6. MacGregor, P., Szoor, B., Savill, N.J. & Matthews, K.R. Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 10, 431-8 (2012).

7. Barry, J.D. & McCulloch, R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49, 1-70 (2001).

8. Overath, P., Chaudhri, M., Steverding, D. & Ziegelbauer, K. Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitol Today 10, 53-8 (1994).

9. Steverding, D. The development of drugs for treatment of sleeping sickness: a historical review. Parasites & Vectors 3, 15 (2010).

10. Michels, P.A., Bringaud, F., Herman, M. & Hannaert, V. Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763, 1463-77 (2006).

11. Ebadi, M. Desk reference of clinical pharmacology, (CRC press, 2007).

12. Munday, J.C. et al. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother 69, 651-63 (2014).

13. Zhang, Y., Li, Z., Pilch, D.S. & Leibowitz, M.J. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding. Nucleic Acids Research 30, 2961-2971 (2002).

14. Baker, N., de Koning, H.P., Mäser, P. & Horn, D. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends in Parasitology 29, 110-118 (2013).

15. Eperon, G. et al. Treatment options for second-stage gambiense human African trypanosomiasis. Expert Review of Anti-infective Therapy 12, 1407-1417 (2014).

16. Fairlamb, A.H. Chemotherapy of human African trypanosomiasis: current and future prospects. Trends in Parasitology 19, 488-494 (2003).

17. Raper, J. & Ebikeme, C. The Death and Life of the Resurrection Drug. PLoS Neglected Tropical Diseases 8(2014).

18. Priotto, G. et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. The Lancet 374, 56-64 (2009).

19. Priotto, G. et al. Nifurtimox-Eflornithine Combination Therapy for Second-Stage Trypanosoma brucei gambiense Sleeping Sickness: A Randomized Clinical Trial in Congo. Clinical Infectious Diseases 45, 1435-1442 (2007).

20. Balasegaram, M. et al. Melarsoprol versus eflornithine for treating late-stage Gambian trypanosomiasis in the Republic of the Congo. Bulletin of the World Health Organization 84, 783-791 (2006).

21. Fish, W.R., Marr, J.J. & Berens, R.L. Purine metabolism in Trypanosoma brucei gambiense. Biochim Biophys Acta 714, 422-8 (1982).

22. Robert T. Jacobs, B.N., and Margaret A. Phillips. State of the Art in African Trypanosome Drug Discovery. Current Topics in Medicinal Chemistry 11, 1255- 1274 (2011).

23. Berg, M., Van der Veken, P., Goeminne, A., Haemers, A. & Augustyns, K. Inhibitors of the Purine Salvage Pathway: A Valuable Approach for Antiprotozoal Chemotherapy? Curr Med Chem 17, 2456-81 (2010).

24. Bessho, T. et al. Novel Characteristics of Trypanosoma brucei Guanosine 5'- monophosphate Reductase Distinct from Host Animals. PLOS Neglected Tropical Diseases 10(2016).

25. Ceron, C.R., Caldas, R.D., Felix, C.R., Mundim, M.H. & Roitman, I. Purine metabolism in trypanosomatids. J Protozool 26, 479-83 (1979).

26. Li, J. et al. Crystal structure of human guanosine monophosphate reductase 2 (GMPR2) in complex with GMP. J Mol Biol 355, 980-8 (2006).

27. Smith, S. et al. The cystathionine-β-synthase domains on the guanosine 5′- monophosphate reductase and inosine 5′-monophosphate dehydrogenase enzymes fromLeishmaniaregulate enzymatic activity in response to guanylate and adenylate nucleotide levels. Molecular Microbiology 100, 824-840 (2016).

28. Baykov, A.A., Tuominen, H.K. & Lahti, R. The CBS domain: a protein module with an emerging prominent role in regulation. ACS Chem Biol 6, 1156-63 (2011).

29. Ereño-Orbea, J., Oyenarte, I. & Martínez-Cruz, L.A. CBS domains: Ligand binding sites and conformational variability. Archives of Biochemistry and Biophysics 540, 70-81 (2013).

30. Anashkin, V.A., Baykov, A.A. & Lahti, R. Enzymes regulated via cystathionine β-synthase domains. Biochemistry (Moscow) 82, 1079-1087 (2017).

31. Ereno-Orbea, J., Oyenarte, I. & Martinez-Cruz, L.A. CBS domains: Ligand binding sites and conformational variability. Arch Biochem Biophys 540, 70-81 (2013).

32. Ignoul, S. & Eggermont, J. CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol 289, C1369-78 (2005).

33. Scott, J.W. et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. Journal of Clinical Investigation 113, 274-284 (2004).

34. Oakhill, J.S. et al. beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci U S A 107, 19237-41 (2010).

35. Oakhill, J.S. et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 332, 1433-5 (2011).

36. Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230-3 (2011).

37. Koutmos, M., Kabil, O., Smith, J.L. & Banerjee, R. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine β-synthase. Proc Natl Acad Sci U S A 107, 20958-63 (2010).

38. Buey, R.M. et al. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat Commun 6, 8923 (2015).

39. Labesse, G. et al. MgATP regulates allostery and fiber formation in IMPDHs. Structure 21, 975-85 (2013).

40. Oliveriusova, J., Kery, V., Maclean, K.N. & Kraus, J.P. Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem 277, 48386-94 (2002).

41. Nimmesgern, E. et al. Biochemical analysis of the modular enzyme inosine 5'- monophosphate dehydrogenase. Protein Expr Purif 17, 282-9 (1999).

42. Hochstetter, A. et al. Microfluidics-based single cell analysis reveals drug-dependent motility changes in trypanosomes. Lab Chip 15, 1961-8 (2015).

43. Langousis, G. & Hill, K.L. Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12, 505-18 (2014).

44. Morgan, M.J. Carbohydrate Metabolism in Cultured Cells, (Springer, 1986).

45. Bringaud, F., Rivière, L. & Coustou, V. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Molecular and biochemical parasitology 149, 1-9 (2006).

46. Fish, W.R., Looker, D.L., Marr, J.J. & Berens, R.L. Purine metabolism in the bloodstream forms of Trypanosoma gambiense and Trypanosoma rhodesiense. Biochimica et Biophysica Acta (BBA)-General Subjects 719, 223-231 (1982).

47. Hammond, D.J. & Gutteridge, W.E. Purine and pyrimidine metabolism in the Trypanosomatidae. Molecular and biochemical parasitology 13, 243-261 (1984).

48. Berriman, M. et al. The genome of the African trypanosome Trypanosoma brucei. science 309, 416-422 (2005).

49. Graven, P., Tambalo, M., Scapozza, L. & Perozzo, R. Purine metabolite and energy charge analysis of Trypanosoma brucei cells in different growth phases using an optimized ion-pair RP-HPLC/UV for the quantification of adenine and guanine pools. Exp Parasitol 141, 28-38 (2014).

50. Ereno-Orbea, J., Majtan, T., Oyenarte, I., Kraus, J.P. & Martinez-Cruz, L.A. Structural basis of regulation and oligomerization of human cystathionine beta- synthase, the central enzyme of transsulfuration. Proc Natl Acad Sci U S A 110, E3790-9 (2013).

51. Ereno-Orbea, J., Majtan, T., Oyenarte, I., Kraus, J.P. & Martinez-Cruz, L.A. Structural insight into the molecular mechanism of allosteric activation of human cystathionine beta-synthase by S-adenosylmethionine. Proc Natl Acad Sci U S A 111, E3845-52 (2014).

52. McCorvie, T.J. et al. Inter-domain communication of human cystathionine beta- synthase: structural basis of S-adenosyl-L-methionine activation. J Biol Chem 289, 36018-30 (2014).

53. Cheung, P.C., Salt, I.P., Davies, S.P., Hardie, D.G. & Carling, D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. The Biochemical journal 346 Pt 3, 659-669 (2000).

54. Hardie, D.G. & Hawley, S.A. AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23, 1112-9 (2001).

55. Baba, S., Hoshino, T., Ito, L. & Kumasaka, T. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments. Acta Crystallogr D Biol Crystallogr 69, 1839-49 (2013).

56. Kabsch, W. Xds. Acta Crystallogr D Biol Crystallogr 66, 125-32 (2010).

57. Labesse, G., Alexandre, T., Gelin, M., Haouz, A. & Munier-Lehmann, H. Crystallographic studies of two variants of Pseudomonas aeruginosa IMPDH with impaired allosteric regulation. Acta Crystallogr D Biol Crystallogr 71, 1890-9 (2015).

58. McCoy, A.J. et al. Phaser crystallographic software. J Appl Crystallogr 40, 658-674 (2007).

59. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. Journal of applied crystallography 30, 1022-1025 (1997).

60. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-42 (2011).

61. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-21 (2010).

62. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-32 (2004).

63. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-55 (1997).

64. Krissinel, E. Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res 43, W314-9 (2015).

65. Basham, M. et al. Data Analysis WorkbeNch(DAWN). Journal of Synchrotron Radiation 22, 853-858 (2015).

66. Förster, S., Apostol, L. & Bras, W. Scatter: software for the analysis of nano- and mesoscale small-angle scattering. Journal of Applied Crystallography 43, 639-646 (2010).

67. Rambo, R.P. & Tainer, J.A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477-481 (2013).

68. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. Journal of Applied Crystallography 36, 1277-1282 (2003).

69. Buey, R.M. et al. A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Sci Rep 7, 2648 (2017).

70. Hedstrom, L. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)8 barrel enzymes. Crit Rev Biochem Mol Biol 47, 250-63 (2012).

71. Anthony, S.A. et al. Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Mol Biol Cell (2017).

72. Yang, J.S., Seo, S.W., Jang, S., Jung, G.Y. & Kim, S. Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol 8, e1002612 (2012).

73. Dror, R.O. et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295-9 (2013).

74. Nussinov, R. & Tsai, C.-J. The Design of Covalent Allosteric Drugs. Annual Review of Pharmacology and Toxicology 55, 249-267 (2015).

75. Xu, X. et al. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. J Enzyme Inhib Med Chem 34, 361-374 (2019).

76. Sheik Amamuddy, O. et al. Integrated Computational Approaches and Tools forAllosteric Drug Discovery. Int J Mol Sci 21(2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る