リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermochemical Properties of Copper-Iron-Sulfur Alloy as Reference Metallic Phase for Analyzing Resulfurization」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermochemical Properties of Copper-Iron-Sulfur Alloy as Reference Metallic Phase for Analyzing Resulfurization

Matsushita, Naoya Awaya, Kosuke Saito, Keijiro Hasegawa, Masakatsu 京都大学 DOI:10.2355/isijinternational.ISIJINT-2021-247

2021.12

概要

The knowledge of sulfur distribution ratios between FeO-containing slag and hot metal is necessary for better understanding resulfurization in hot metal pre-treatment. To measure sulfur distribution ratios at temperature below the melting point of pure iron, copper-iron liquid alloy has been suggested as a reference metal equilibrated with slag. In the present study, the Henrian activity coefficient of sulfur in copper-iron liquid alloy was determined at 1573 K and 1673 K. The sulfur activity coefficient decreased with an increase in iron content; this result was not inconsistent with that reported by Alcock and Richardson. Negative logarithmic value for the sulfur activity coefficient indicated that the chemical affinity between iron and sulfur would be stronger than that between copper and sulfur.

この論文で使われている画像

参考文献

PSO2

1.89 × 10 4

− 3.7828) .... (A6)

PS2 1/ 2 ⋅ PO2

(T / K )

(1 / 2) S2 + (1 / 2) O2 = SO ................... (A7)

logK ( A7) = log

2935

.... (A4)

(1 / 2) S2 + O2 = SO2 ....................... (A5)

1) E. T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, (1980), 10.

2) G. K. Sigworth and J. F. Elliott: Met. Sci., 8 (1974), 298.

3) F. D. Richardson and C. J. B. Fincham: J. Iron Steel Inst., 178 (1954),

4.

4) J.-D. Shim and S. Ban-ya: Tetsu-to-Hagané, 68 (1982), 251 (in

Japanese).

.... (A2)

H 2 + (1 / 2 ) S2 = H 2S ....................... (A3)

Acknowledgement

This work was supported by ISIJ Research Promotion

Grant 2019 and JSPS KAKENHI Grant Number 18K04798,

and these are gratefully acknowledged.

PH2O

PH2 ⋅ PO2 1/ 2

PSO

3.37 × 103

+ 0.3128) .... (A8)

PS2 1/ 2 ⋅ PO2 1/ 2

(T / K )

© 2021 ISIJ

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

ISIJ International, Vol. 61 (2021), No. 12

, where K is the equilibrium constant of the corresponding

reaction. The mole ratios of hydrogen/argon, sulfur/argon

and oxygen/argon (denoted as α, β and γ ) remain constant

during the chemical reactions.

nH

2 PH2 ° 2 PH2 + 2 PH2O + 2 PH2S

....... (A9)

=α =

nAr

PAr °

PAr

nS

PSO2 ° PH2S + 2 PS2 + PSO2 + PSO

.... (A10)

=β=

nAr

PAr °

PAr

PAr =

PAr =

x = PH2 =

Equations (A2), (A4), (A6) and (A8) to (A12) involve 8

unknowns, i.e., PAr, PH2 , PH2O , PH2S , PO2 , PS2 , PSO2 and PSO.

Hence, the equilibrium values for these 8 unknowns are

obtainable by solving these 8 equations simultaneously with

the initial values for PAr°, PH2 ° and PSO2 °. Now, PH2 , PO2 1/2 and

PS2 1/2 are abbreviated as x, y and z, respectively. By rewriting

Eqs. (A2), (A4), (A6) and (A8), PH2O , PH2S , PSO2 and PSO can

be expressed as

PH2S = K ( A3) xz ........................ (A14)

= K ( A5) y z ........................ (A15)

PSO2

(α + 4β − 2γ ) K ( A5) z + 4β  K ( A1) y

+ ( −2α + 4β − 2γ ) K ( A3) K ( A5) z 2

+ {( −2α + 4β ) K ( A3) + ( 4β − 2γ ) K ( A5)

+ (α + 2β − 2γ ) K ( A1) K ( A7)} z + 4β  y 2

+ {( 2α − 4γ ) K ( A1) + ( −α + 2β − 2γ ) K ( A3) K ( A7)} z 2

+ ( 2β − 2γ ) K ( A7) z  y

2

Then, PAr can be given as

PAr =

© 2021 ISIJ

−4γ  K ( A3) z + 1 z 2 = 0

...................................... (A21)

Finally, z is optimized when the partial pressures of all the

gaseous species determined from Eqs. (A13) to (A20) with

y = PO2 1/2 and z = PS2 1/2 satisfy Eq. (A12). The calculation

procedure mentioned here can be carried out with simple

spreadsheet software.

PSO = K ( A7) yz ......................... (A16)

.... (A20)

Equation (A20) indicates that, when the value for z is

assumed, y can be calculated by solving the following cubic

equation.

PAr + PH2 + PH2O + PH2S + PO2 + PS2 + PSO2 + PSO = 1 .... (A12)

2α z 2 + α K ( A5) y 2 z + α K ( A7) yz

2β + 2β K ( A1) y + ( −α + 2β ) K ( A3) z

2α y 2 + 2α K ( A5) y 2 z + α K ( A7) yz

2γ + ( −α + 2γ ) K ( A1) y + 2γ K ( A3) z

When the gas phase is present at one atmospheric pressure,

we have

PH2O = K ( A1) xy ........................ (A13)

K ( A1) xy + 2 y 2 + 2 K ( A5) y 2 z + K ( A7) yz

.... (A19)

By erasing PAr in Eqs. (A17) to (A19), we obtain

nO

2 PSO2 ° PH2O + 2 PO2 + 2 PSO2 + PSO

....(A11)

=γ =

nAr

PAr °

PAr

K ( A3) xz + 2 z 2 + K ( A5) y 2 z + K ( A7) yz

.... (A18)

2 x + 2 K ( A1) xy + 2 K ( A3) xz .......... (A17)

2936

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る