リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「State-of-the-art liver disease research using liver-on-a-chip」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

State-of-the-art liver disease research using liver-on-a-chip

Deguchi, Sayaka Takayama, Kazuo 京都大学 DOI:10.1186/s41232-022-00248-0

2022.12.09

概要

To understand disease pathophysiologies, models that recapitulate human functions are necessary. In vitro models that consist of human cells are preferred to ones using animal cells, because organ functions can vary from species to species. However, conventional in vitro models do not recapitulate human organ functions well. Organ-on-a-chip technology provides a reliable in vitro model of the functional units of human organs. Organ-on-a-chip technology uses microfluidic devices and their accessories to impart organ functions to human cells. Using microfluidic devices, we can co-culture multiple cell types that compose human organs. Moreover, we can culture human cells under physiologically relevant stresses, such as mechanical and shear stresses. Current organ-on-a-chip technology can reproduce the functions of several organs including the liver. Because it is difficult to maintain the function of human hepatocytes, which are the gold standard of in vitro liver models, under conventional culture conditions, the application of liver-on-a-chips to liver disease research is expected. This review introduces the current status and future prospects of liver-on-a-chips in liver disease research.

この論文で使われている画像

参考文献

1. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–71.

2. Alves-Bezerra M, Cohen DE. Triglyceride Metabolism in the Liver. Compr Physiol. 2017;8(1):1–8.

3. Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–212.

4. Remmer H. The role of theliver in drug metabolism. Am J Med. 1970;49:617–29.

5. Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol. 2016;13(3):301–15.

6. Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol. 2017;66(1):212–27.

7. Fujita T, Narumiya S. Roles of hepatic stellate cells in liver infammation: a new perspective. Infamm Regen. 2016;36:1.

8. Bilzer M, Roggel F, Gerbes AL. Role of Kupfer cells in host defense and liver disease. Liver Int. 2006;26(10):1175–86.

9. Kang YBA, Eo J, Mert S, Yarmush ML, Usta OB. Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep. 2018;8(1):8951.

10. Ya S, Ding W, Li S, Du K, Zhang Y, Li C, et al. On-chip construction of liver lobules with self-assembled perfusable hepatic sinusoid networks. ACS Appl Mater Interfaces. 2021;13(28):32640–52.

11. Hijmans BS, Grefhorst A, Oosterveer MH, Groen AK. Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie. 2014;96:121–9.

12. Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 2017;11:622–30.

13. Kusminski CM, Scherer PE. New zoning laws enforced by glucagon. Proc Natl Acad Sci U S A. 2018;115(17):4308–10.

14. McCarty WJ, Usta OB, Yarmush ML. A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci Rep. 2016;6:26868.

15. Li X, George SM, Vernetti L, Gough AH, Taylor DL. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip. 2018;18(17):2614–31.

16. Weng YS, Chang SF, Shih MC, Tseng SH, Lai CH. Scafold-Free Liver-On-A-Chip with Multiscale Organotypic Cultures. Adv Mater. 2017;29(36):1701545.

17. Ho CT, Lin RZ, Chen RJ, Chin CK, Gong SE, Chang HY, et al. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip. 2013;13(18):3578–87.

18. Ma C, Zhao L, Zhou EM, Xu J, Shen S, Wang J. On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay. Anal Chem. 2016;88(3):1719–27.

19. Chen Y-S, Tung C-K, Dai T-H, Wang X, Yeh C-T, Fan S-K, et al. Liver-lobulemimicking patterning via dielectrophoresis and hydrogel photopolymerization. Sensors Actuators B Chem. 2021;343:130159.

20. MacDonald JS, Robertson RT. Toxicity testing in the 21st century: a view from the pharmaceutical industry. Toxicol Sci. 2009;110(1):40–6.

21. Bircsak KM, DeBiasio R, Miedel M, Alsebahi A, Reddinger R, Saleh A, et al. A 3D microfuidic liver model for high throughput compound toxicity screening in the OrganoPlate®. Toxicology. 2021;450:152667.

22. Jang KJ, Otieno MA, Ronxhi J, Lim HK, Ewart L, Kodella KR, et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci Transl Med. 2019;11(517):eaax5516.

23. Bavli D, Prill S, Ezra E, Levy G, Cohen M, Vinken M, et al. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci U S A. 2016;113(16):E2231–40.

24. Prill S, Bavli D, Levy G, Ezra E, Schmälzlin E, Jaeger MS, et al. Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone. Arch Toxicol. 2016;90(5):1181–91.

25. Ehrlich A, Tsytkin-Kirschenzweig S, Ioannidis K, Ayyash M, Riu A, Note R, et al. Microphysiological fux balance platform unravels the dynamics of drug induced steatosis. Lab Chip. 2018;18(17):2510–22.

26. Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY, Gough A, et al. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood). 2016;241(1):101–14.

27. Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR. Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology. 2015;61(4):1370–81.

28. Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol. 2008;26(1):120–6.

29. Khetani SR, Kanchagar C, Ukairo O, Krzyzewski S, Moore A, Shi J, et al. Use of micropatterned cocultures to detect compounds that cause druginduced liver injury in humans. Toxicol Sci. 2013;132(1):107–17.

30. Ware BR, Berger DR, Khetani SR. Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci. 2015;145(2):252–62.

31. Poynard T, Mathurin P, Lai CL, Guyader D, Poupon R, Tainturier MH, et al. A comparison of fbrosis progression in chronic liver diseases. J Hepatol. 2003;38(3):257–65.

32. Zhou Q, Patel D, Kwa T, Haque A, Matharu Z, Stybayeva G, et al. Liver injuryon-a-chip: microfuidic co-cultures with integrated biosensors for monitoring liver cell signaling during injury. Lab Chip. 2015;15(23):4467–78.

33. Deng J, Chen Z, Zhang X, Luo Y, Wu Z, Lu Y, et al. A liver-chip-based alcoholic liver disease model featuring multi-non-parenchymal cells. Biomed Microdevices. 2019;21(3):57.

34. Nawroth JC, Petropolis DB, Manatakis DV, Maulana TI, Burchett G, Schlünder K, et al. Modeling alcohol-associated liver disease in a human Liver-Chip. Cell Rep. 2021;36(3):109393.

35. Lackner C, Spindelboeck W, Haybaeck J, Douschan P, Rainer F, Terracciano L, et al. Histological parameters and alcohol abstinence determine long-term prognosis in patients with alcoholic liver disease. J Hepatol. 2017;66(3):610–8.

36. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–609.

37. Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2014;28(4):637–53.

38. Lasli S, Kim HJ, Lee K, Suurmond CE, Goudie M, Bandaru P, et al. A human liver-on-a-chip platform for modeling nonalcoholic fatty liver disease. Adv Biosyst. 2019;3(8):e1900104.

39. Du K, Li S, Li C, Li P, Miao C, Luo T, et al. Modeling nonalcoholic fatty liver disease on a liver lobule chip with dual blood supply. Acta Biomater. 2021;134:228–39.

40. Freag MS, Namgung B, Reyna Fernandez ME, Gherardi E, Sengupta S, Jang HL. Human Nonalcoholic Steatohepatitis on a Chip. Hepatol Commun. 2021;5(2):217–33.

41. Bulutoglu B, Rey-Bedón C, Kang YBA, Mert S, Yarmush ML, Usta OB. A microfuidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip. 2019;19(18):3022–31.

42. Gori M, Simonelli MC, Giannitelli SM, Businaro L, Trombetta M, Rainer A. Investigating nonalcoholic fatty liver disease in a liver-on-a-chip microfuidic device. PLoS One. 2016;11(7):e0159729.

43. Tan K, Keegan P, Rogers M, Lu M, Gosset JR, Charest J, et al. A highthroughput microfuidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating fow conditions. Lab Chip. 2019;19(9):1556–66.

44. Wang Y, Wang H, Deng P, Tao T, Liu H, Wu S, et al. Modeling Human Nonalcoholic Fatty Liver Disease (NAFLD) with an Organoids-on-a-Chip System. ACS Biomater Sci Eng. 2020;6(10):5734–43.

45. Mahjoubin-Tehran M, De Vincentis A, Mikhailidis DP, Atkin SL, Mantzoros CS, Jamialahmadi T, et al. Non-alcoholic fatty liver disease and steatohepatitis: State of the art on efective therapeutics based on the gold standard method for diagnosis. Mol Metab. 2021;50:101049.

46. Chapman RW, Lynch KD. Obeticholic acid-a new therapy in PBC and NASH. Br Med Bull. 2020;133(1):95–104.

47. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafbranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fbrosis worsening. Gastroenterology. 2016;150(5):1147–1159.e1145.

48. Boeckmans J, Buyl K, Natale A, Vandenbempt V, Branson S, De Boe V, et al. Elafbranor restricts lipogenic and infammatory responses in a human skin stem cell-derived model of NASH. Pharmacol Res. 2019;144:377–89.

49. Connolly JJ, Ooka K, Lim JK. Future pharmacotherapy for non-alcoholic steatohepatitis (NASH): review of phase 2 and 3 trials. J Clin Transl Hepatol. 2018;6(3):264–75.

50. Cho HJ, Kim HJ, Lee K, Lasli S, Ung A, Hofman T, et al. Bioengineered multicellular liver microtissues for modeling advanced hepatic fbrosis driven through non-alcoholic fatty liver disease. Small. 2021;17(14):e2007425.

51. Kostrzewski T, Cornforth T, Snow SA, Ouro-Gnao L, Rowe C, Large EM, et al. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol. 2017;23(2):204–15.

52. Kostrzewski T, Maraver P, Ouro-Gnao L, Levi A, Snow S, Miedzik A, et al. A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun. 2020;4(1):77–91.

53. Kostrzewski T, Snow S, Battle AL, Peel S, Ahmad Z, Basak J, et al. Modelling human liver fbrosis in the context of non-alcoholic steatohepatitis using a microphysiological system. Commun Biol. 2021;4(1):1080.

54. Lee JB, Park JS, Shin YM, Lee DH, Yoon JK, Kim DH, et al. Implantable vascularized liver chip for cross-validation of disease treatment with animal model. Adv Funct Mater. 2019;29(23):1900075.

55. Slaughter VL, Rumsey JW, Boone R, Malik D, Cai Y, Sriram NN, et al. Validation of an adipose-liver human-on-a-chip model of NAFLD for preclinical therapeutic efcacy evaluation. Sci Rep. 2021;11(1):13159.

56. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–5.

57. Qin G, Shao JG, Zhu YC, Xu AD, Yao JH, Wang XL, et al. Populationrepresentative incidence of acute-on-chronic liver failure: a prospective cross-sectional study. J Clin Gastroenterol. 2016;50(8):670–5.

58. Kang YB, Rawat S, Duchemin N, Bouchard M, Noh M. Human liver sinusoid on a chip for hepatitis B virus replication study. Micromachines. 2017;8(1):27.

59. Kang YB, Sodunke TR, Lamontagne J, Cirillo J, Rajiv C, Bouchard MJ, et al. Liver sinusoid on a chip: Long-term layered co-culture of primary rat hepatocytes and endothelial cells in microfuidic platforms. Biotechnol Bioeng. 2015;112(12):2571–82.

60. Ortega-Prieto A, Skelton J, Wai S, Large E, Lussignol M, Vizcay-Barrena G, et al. 3D microfuidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun. 2018;9(1):1–15.

61. Sodunke TR, Bouchard MJ, Noh HM. Microfuidic platform for hepatitis B viral replication study. Biomed Microdevices. 2008;10(3):393–402.

参考文献をもっと見る